xref: /AOO41X/main/drawinglayer/source/processor3d/zbufferprocessor3d.cxx (revision 6b4a01bbde27fb8b2814adb93d98585652927967)
1 /**************************************************************
2  *
3  * Licensed to the Apache Software Foundation (ASF) under one
4  * or more contributor license agreements.  See the NOTICE file
5  * distributed with this work for additional information
6  * regarding copyright ownership.  The ASF licenses this file
7  * to you under the Apache License, Version 2.0 (the
8  * "License"); you may not use this file except in compliance
9  * with the License.  You may obtain a copy of the License at
10  *
11  *   http://www.apache.org/licenses/LICENSE-2.0
12  *
13  * Unless required by applicable law or agreed to in writing,
14  * software distributed under the License is distributed on an
15  * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
16  * KIND, either express or implied.  See the License for the
17  * specific language governing permissions and limitations
18  * under the License.
19  *
20  *************************************************************/
21 
22 
23 
24 // MARKER(update_precomp.py): autogen include statement, do not remove
25 #include "precompiled_drawinglayer.hxx"
26 
27 #include <drawinglayer/processor3d/zbufferprocessor3d.hxx>
28 #include <basegfx/raster/bpixelraster.hxx>
29 #include <vcl/bmpacc.hxx>
30 #include <basegfx/raster/rasterconvert3d.hxx>
31 #include <basegfx/raster/bzpixelraster.hxx>
32 #include <drawinglayer/attribute/materialattribute3d.hxx>
33 #include <drawinglayer/texture/texture.hxx>
34 #include <drawinglayer/primitive3d/drawinglayer_primitivetypes3d.hxx>
35 #include <drawinglayer/primitive3d/textureprimitive3d.hxx>
36 #include <drawinglayer/primitive3d/polygonprimitive3d.hxx>
37 #include <drawinglayer/primitive3d/polypolygonprimitive3d.hxx>
38 #include <drawinglayer/geometry/viewinformation2d.hxx>
39 #include <basegfx/polygon/b3dpolygontools.hxx>
40 #include <basegfx/polygon/b3dpolypolygontools.hxx>
41 #include <drawinglayer/attribute/sdrlightingattribute3d.hxx>
42 
43 //////////////////////////////////////////////////////////////////////////////
44 
45 using namespace com::sun::star;
46 
47 //////////////////////////////////////////////////////////////////////////////
48 
49 namespace
50 {
BPixelRasterToBitmapEx(const basegfx::BPixelRaster & rRaster,sal_uInt16 mnAntiAlialize)51     BitmapEx BPixelRasterToBitmapEx(const basegfx::BPixelRaster& rRaster, sal_uInt16 mnAntiAlialize)
52     {
53         BitmapEx aRetval;
54         const sal_uInt32 nWidth(mnAntiAlialize ? rRaster.getWidth()/mnAntiAlialize : rRaster.getWidth());
55         const sal_uInt32 nHeight(mnAntiAlialize ? rRaster.getHeight()/mnAntiAlialize : rRaster.getHeight());
56 
57         if(nWidth && nHeight)
58         {
59             const Size aDestSize(nWidth, nHeight);
60             sal_uInt8 nInitAlpha(255);
61             Bitmap aContent(aDestSize, 24);
62             AlphaMask aAlpha(aDestSize, &nInitAlpha);
63             BitmapWriteAccess* pContent = aContent.AcquireWriteAccess();
64             BitmapWriteAccess* pAlpha = aAlpha.AcquireWriteAccess();
65 
66             if(pContent && pAlpha)
67             {
68                 if(mnAntiAlialize)
69                 {
70                     const sal_uInt16 nDivisor(mnAntiAlialize * mnAntiAlialize);
71 
72                     for(sal_uInt32 y(0L); y < nHeight; y++)
73                     {
74                         for(sal_uInt32 x(0L); x < nWidth; x++)
75                         {
76                             sal_uInt16 nRed(0);
77                             sal_uInt16 nGreen(0);
78                             sal_uInt16 nBlue(0);
79                             sal_uInt16 nOpacity(0);
80                             sal_uInt32 nIndex(rRaster.getIndexFromXY(x * mnAntiAlialize, y * mnAntiAlialize));
81 
82                             for(sal_uInt32 c(0); c < mnAntiAlialize; c++)
83                             {
84                                 for(sal_uInt32 d(0); d < mnAntiAlialize; d++)
85                                 {
86                                     const basegfx::BPixel& rPixel(rRaster.getBPixel(nIndex++));
87                                     nRed = nRed + rPixel.getRed();
88                                     nGreen = nGreen + rPixel.getGreen();
89                                     nBlue = nBlue + rPixel.getBlue();
90                                     nOpacity = nOpacity + rPixel.getOpacity();
91                                 }
92 
93                                 nIndex += rRaster.getWidth() - mnAntiAlialize;
94                             }
95 
96                             nOpacity = nOpacity / nDivisor;
97 
98                             if(nOpacity)
99                             {
100                                 pContent->SetPixel(y, x, BitmapColor(
101                                     (sal_uInt8)(nRed / nDivisor),
102                                     (sal_uInt8)(nGreen / nDivisor),
103                                     (sal_uInt8)(nBlue / nDivisor)));
104                                 pAlpha->SetPixel(y, x, BitmapColor(255 - (sal_uInt8)nOpacity));
105                             }
106                         }
107                     }
108                 }
109                 else
110                 {
111                     sal_uInt32 nIndex(0L);
112 
113                     for(sal_uInt32 y(0L); y < nHeight; y++)
114                     {
115                         for(sal_uInt32 x(0L); x < nWidth; x++)
116                         {
117                             const basegfx::BPixel& rPixel(rRaster.getBPixel(nIndex++));
118 
119                             if(rPixel.getOpacity())
120                             {
121                                 pContent->SetPixel(y, x, BitmapColor(rPixel.getRed(), rPixel.getGreen(), rPixel.getBlue()));
122                                 pAlpha->SetPixel(y, x, BitmapColor(255 - rPixel.getOpacity()));
123                             }
124                         }
125                     }
126                 }
127             }
128 
129             delete pContent;
130             delete pAlpha;
131 
132             aRetval = BitmapEx(aContent, aAlpha);
133 
134             // #i101811# set PrefMapMode and PrefSize at newly created Bitmap
135             aRetval.SetPrefMapMode(MAP_PIXEL);
136             aRetval.SetPrefSize(Size(nWidth, nHeight));
137         }
138 
139         return aRetval;
140     }
141 } // end of anonymous namespace
142 
143 //////////////////////////////////////////////////////////////////////////////
144 
145 class ZBufferRasterConverter3D : public basegfx::RasterConverter3D
146 {
147 private:
148     const drawinglayer::processor3d::DefaultProcessor3D&    mrProcessor;
149     basegfx::BZPixelRaster&                                 mrBuffer;
150 
151     // interpolators for a single line span
152     basegfx::ip_single                                      maIntZ;
153     basegfx::ip_triple                                      maIntColor;
154     basegfx::ip_triple                                      maIntNormal;
155     basegfx::ip_double                                      maIntTexture;
156     basegfx::ip_triple                                      maIntInvTexture;
157 
158     // current material to use for ratsreconversion
159     const drawinglayer::attribute::MaterialAttribute3D*     mpCurrentMaterial;
160 
161     // bitfield
162     // some boolean flags for line span interpolator usages
163     unsigned                                                mbModifyColor : 1;
164     unsigned                                                mbUseTex : 1;
165     unsigned                                                mbHasTexCoor : 1;
166     unsigned                                                mbHasInvTexCoor : 1;
167     unsigned                                                mbUseNrm : 1;
168     unsigned                                                mbUseCol : 1;
169 
getTextureCoor(basegfx::B2DPoint & rTarget) const170     void getTextureCoor(basegfx::B2DPoint& rTarget) const
171     {
172         if(mbHasTexCoor)
173         {
174             rTarget.setX(maIntTexture.getX().getVal());
175             rTarget.setY(maIntTexture.getY().getVal());
176         }
177         else if(mbHasInvTexCoor)
178         {
179             const double fZFactor(maIntInvTexture.getZ().getVal());
180             const double fInvZFactor(basegfx::fTools::equalZero(fZFactor) ? 1.0 : 1.0 / fZFactor);
181             rTarget.setX(maIntInvTexture.getX().getVal() * fInvZFactor);
182             rTarget.setY(maIntInvTexture.getY().getVal() * fInvZFactor);
183         }
184     }
185 
incrementLineSpanInterpolators(double fStep)186     void incrementLineSpanInterpolators(double fStep)
187     {
188         maIntZ.increment(fStep);
189 
190         if(mbUseTex)
191         {
192             if(mbHasTexCoor)
193             {
194                 maIntTexture.increment(fStep);
195             }
196             else if(mbHasInvTexCoor)
197             {
198                 maIntInvTexture.increment(fStep);
199             }
200         }
201 
202         if(mbUseNrm)
203         {
204             maIntNormal.increment(fStep);
205         }
206 
207         if(mbUseCol)
208         {
209             maIntColor.increment(fStep);
210         }
211     }
212 
decideColorAndOpacity(basegfx::BColor & rColor)213     double decideColorAndOpacity(basegfx::BColor& rColor)
214     {
215         // init values with full opacity and material color
216         OSL_ENSURE(0 != mpCurrentMaterial, "CurrentMaterial not set (!)");
217         double fOpacity(1.0);
218         rColor = mpCurrentMaterial->getColor();
219 
220         if(mbUseTex)
221         {
222             basegfx::B2DPoint aTexCoor(0.0, 0.0);
223             getTextureCoor(aTexCoor);
224 
225             if(mrProcessor.getGeoTexSvx().get())
226             {
227                 // calc color in spot. This may also set to invisible already when
228                 // e.g. bitmap textures have transparent parts
229                 mrProcessor.getGeoTexSvx()->modifyBColor(aTexCoor, rColor, fOpacity);
230             }
231 
232             if(basegfx::fTools::more(fOpacity, 0.0) && mrProcessor.getTransparenceGeoTexSvx().get())
233             {
234                 // calc opacity. Object has a 2nd texture, a transparence texture
235                 mrProcessor.getTransparenceGeoTexSvx()->modifyOpacity(aTexCoor, fOpacity);
236             }
237         }
238 
239         if(basegfx::fTools::more(fOpacity, 0.0))
240         {
241             if(mrProcessor.getGeoTexSvx().get())
242             {
243                 if(mbUseNrm)
244                 {
245                     // blend texture with phong
246                     rColor = mrProcessor.getSdrLightingAttribute().solveColorModel(
247                         basegfx::B3DVector(maIntNormal.getX().getVal(), maIntNormal.getY().getVal(), maIntNormal.getZ().getVal()),
248                         rColor,
249                         mpCurrentMaterial->getSpecular(),
250                         mpCurrentMaterial->getEmission(),
251                         mpCurrentMaterial->getSpecularIntensity());
252                 }
253                 else if(mbUseCol)
254                 {
255                     // blend texture with gouraud
256                     basegfx::BColor aBlendColor(maIntColor.getX().getVal(), maIntColor.getY().getVal(), maIntColor.getZ().getVal());
257                     rColor *= aBlendColor;
258                 }
259                 else if(mrProcessor.getModulate())
260                 {
261                     // blend texture with single material color
262                     rColor *= mpCurrentMaterial->getColor();
263                 }
264             }
265             else
266             {
267                 if(mbUseNrm)
268                 {
269                     // modify color with phong
270                     rColor = mrProcessor.getSdrLightingAttribute().solveColorModel(
271                         basegfx::B3DVector(maIntNormal.getX().getVal(), maIntNormal.getY().getVal(), maIntNormal.getZ().getVal()),
272                         rColor,
273                         mpCurrentMaterial->getSpecular(),
274                         mpCurrentMaterial->getEmission(),
275                         mpCurrentMaterial->getSpecularIntensity());
276                 }
277                 else if(mbUseCol)
278                 {
279                     // modify color with gouraud
280                     rColor.setRed(maIntColor.getX().getVal());
281                     rColor.setGreen(maIntColor.getY().getVal());
282                     rColor.setBlue(maIntColor.getZ().getVal());
283                 }
284             }
285 
286             if(mbModifyColor)
287             {
288                 rColor = mrProcessor.getBColorModifierStack().getModifiedColor(rColor);
289             }
290         }
291 
292         return fOpacity;
293     }
294 
setupLineSpanInterpolators(const basegfx::RasterConversionLineEntry3D & rA,const basegfx::RasterConversionLineEntry3D & rB)295     void setupLineSpanInterpolators(const basegfx::RasterConversionLineEntry3D& rA, const basegfx::RasterConversionLineEntry3D& rB)
296     {
297         // get inverse XDelta
298         const double xInvDelta(1.0 / (rB.getX().getVal() - rA.getX().getVal()));
299 
300         // prepare Z-interpolator
301         const double fZA(rA.getZ().getVal());
302         const double fZB(rB.getZ().getVal());
303         maIntZ = basegfx::ip_single(fZA, (fZB - fZA) * xInvDelta);
304 
305         // get bools and init other interpolators on demand accordingly
306         mbModifyColor = mrProcessor.getBColorModifierStack().count();
307         mbHasTexCoor = SCANLINE_EMPTY_INDEX != rA.getTextureIndex() && SCANLINE_EMPTY_INDEX != rB.getTextureIndex();
308         mbHasInvTexCoor = SCANLINE_EMPTY_INDEX != rA.getInverseTextureIndex() && SCANLINE_EMPTY_INDEX != rB.getInverseTextureIndex();
309         const bool bTextureActive(mrProcessor.getGeoTexSvx().get() || mrProcessor.getTransparenceGeoTexSvx().get());
310         mbUseTex = bTextureActive && (mbHasTexCoor || mbHasInvTexCoor || mrProcessor.getSimpleTextureActive());
311         const bool bUseColorTex(mbUseTex && mrProcessor.getGeoTexSvx().get());
312         const bool bNeedNrmOrCol(!bUseColorTex || (bUseColorTex && mrProcessor.getModulate()));
313         mbUseNrm = bNeedNrmOrCol && SCANLINE_EMPTY_INDEX != rA.getNormalIndex() && SCANLINE_EMPTY_INDEX != rB.getNormalIndex();
314         mbUseCol = !mbUseNrm && bNeedNrmOrCol && SCANLINE_EMPTY_INDEX != rA.getColorIndex() && SCANLINE_EMPTY_INDEX != rB.getColorIndex();
315 
316         if(mbUseTex)
317         {
318             if(mbHasTexCoor)
319             {
320                 const basegfx::ip_double& rTA(getTextureInterpolators()[rA.getTextureIndex()]);
321                 const basegfx::ip_double& rTB(getTextureInterpolators()[rB.getTextureIndex()]);
322                 maIntTexture = basegfx::ip_double(
323                     rTA.getX().getVal(), (rTB.getX().getVal() - rTA.getX().getVal()) * xInvDelta,
324                     rTA.getY().getVal(), (rTB.getY().getVal() - rTA.getY().getVal()) * xInvDelta);
325             }
326             else if(mbHasInvTexCoor)
327             {
328                 const basegfx::ip_triple& rITA(getInverseTextureInterpolators()[rA.getInverseTextureIndex()]);
329                 const basegfx::ip_triple& rITB(getInverseTextureInterpolators()[rB.getInverseTextureIndex()]);
330                 maIntInvTexture = basegfx::ip_triple(
331                     rITA.getX().getVal(), (rITB.getX().getVal() - rITA.getX().getVal()) * xInvDelta,
332                     rITA.getY().getVal(), (rITB.getY().getVal() - rITA.getY().getVal()) * xInvDelta,
333                     rITA.getZ().getVal(), (rITB.getZ().getVal() - rITA.getZ().getVal()) * xInvDelta);
334             }
335         }
336 
337         if(mbUseNrm)
338         {
339             const basegfx::ip_triple& rNA(getNormalInterpolators()[rA.getNormalIndex()]);
340             const basegfx::ip_triple& rNB(getNormalInterpolators()[rB.getNormalIndex()]);
341             maIntNormal = basegfx::ip_triple(
342                 rNA.getX().getVal(), (rNB.getX().getVal() - rNA.getX().getVal()) * xInvDelta,
343                 rNA.getY().getVal(), (rNB.getY().getVal() - rNA.getY().getVal()) * xInvDelta,
344                 rNA.getZ().getVal(), (rNB.getZ().getVal() - rNA.getZ().getVal()) * xInvDelta);
345         }
346 
347         if(mbUseCol)
348         {
349             const basegfx::ip_triple& rCA(getColorInterpolators()[rA.getColorIndex()]);
350             const basegfx::ip_triple& rCB(getColorInterpolators()[rB.getColorIndex()]);
351             maIntColor = basegfx::ip_triple(
352                 rCA.getX().getVal(), (rCB.getX().getVal() - rCA.getX().getVal()) * xInvDelta,
353                 rCA.getY().getVal(), (rCB.getY().getVal() - rCA.getY().getVal()) * xInvDelta,
354                 rCA.getZ().getVal(), (rCB.getZ().getVal() - rCA.getZ().getVal()) * xInvDelta);
355         }
356     }
357 
358     virtual void processLineSpan(const basegfx::RasterConversionLineEntry3D& rA, const basegfx::RasterConversionLineEntry3D& rB, sal_Int32 nLine, sal_uInt32 nSpanCount);
359 
360 public:
ZBufferRasterConverter3D(basegfx::BZPixelRaster & rBuffer,const drawinglayer::processor3d::ZBufferProcessor3D & rProcessor)361     ZBufferRasterConverter3D(basegfx::BZPixelRaster& rBuffer, const drawinglayer::processor3d::ZBufferProcessor3D& rProcessor)
362     :   basegfx::RasterConverter3D(),
363         mrProcessor(rProcessor),
364         mrBuffer(rBuffer),
365         maIntZ(),
366         maIntColor(),
367         maIntNormal(),
368         maIntTexture(),
369         maIntInvTexture(),
370         mpCurrentMaterial(0),
371         mbModifyColor(false),
372         mbUseTex(false),
373         mbHasTexCoor(false),
374         mbUseNrm(false),
375         mbUseCol(false)
376     {}
377 
setCurrentMaterial(const drawinglayer::attribute::MaterialAttribute3D & rMaterial)378     void setCurrentMaterial(const drawinglayer::attribute::MaterialAttribute3D& rMaterial)
379     {
380         mpCurrentMaterial = &rMaterial;
381     }
382 };
383 
processLineSpan(const basegfx::RasterConversionLineEntry3D & rA,const basegfx::RasterConversionLineEntry3D & rB,sal_Int32 nLine,sal_uInt32 nSpanCount)384 void ZBufferRasterConverter3D::processLineSpan(const basegfx::RasterConversionLineEntry3D& rA, const basegfx::RasterConversionLineEntry3D& rB, sal_Int32 nLine, sal_uInt32 nSpanCount)
385 {
386     if(!(nSpanCount & 0x0001))
387     {
388         if(nLine >= 0 && nLine < (sal_Int32)mrBuffer.getHeight())
389         {
390             sal_uInt32 nXA(::std::min(mrBuffer.getWidth(), (sal_uInt32)::std::max((sal_Int32)0, basegfx::fround(rA.getX().getVal()))));
391             const sal_uInt32 nXB(::std::min(mrBuffer.getWidth(), (sal_uInt32)::std::max((sal_Int32)0, basegfx::fround(rB.getX().getVal()))));
392 
393             if(nXA < nXB)
394             {
395                 // prepare the span interpolators
396                 setupLineSpanInterpolators(rA, rB);
397 
398                 // bring span interpolators to start condition by incrementing with the possible difference of
399                 // clamped and non-clamped XStart. Interpolators are setup relying on double precision
400                 // X-values, so that difference is the correct value to compensate for possible clampings
401                 incrementLineSpanInterpolators(static_cast<double>(nXA) - rA.getX().getVal());
402 
403                 // prepare scanline index
404                 sal_uInt32 nScanlineIndex(mrBuffer.getIndexFromXY(nXA, static_cast<sal_uInt32>(nLine)));
405                 basegfx::BColor aNewColor;
406 
407                 while(nXA < nXB)
408                 {
409                     // early-test Z values if we need to do anything at all
410                     const double fNewZ(::std::max(0.0, ::std::min((double)0xffff, maIntZ.getVal())));
411                     const sal_uInt16 nNewZ(static_cast< sal_uInt16 >(fNewZ));
412                     sal_uInt16& rOldZ(mrBuffer.getZ(nScanlineIndex));
413 
414                     if(nNewZ > rOldZ)
415                     {
416                         // detect color and opacity for this pixel
417                         const sal_uInt16 nOpacity(::std::max((sal_Int16)0, static_cast< sal_Int16 >(decideColorAndOpacity(aNewColor) * 255.0)));
418 
419                         if(nOpacity > 0)
420                         {
421                             // avoid color overrun
422                             aNewColor.clamp();
423 
424                             if(nOpacity >= 0x00ff)
425                             {
426                                 // full opacity (not transparent), set z and color
427                                 rOldZ = nNewZ;
428                                 mrBuffer.getBPixel(nScanlineIndex) = basegfx::BPixel(aNewColor, 0xff);
429                             }
430                             else
431                             {
432                                 basegfx::BPixel& rDest = mrBuffer.getBPixel(nScanlineIndex);
433 
434                                 if(rDest.getOpacity())
435                                 {
436                                     // mix new color by using
437                                     // color' = color * (1 - opacity) + newcolor * opacity
438                                     const sal_uInt16 nTransparence(0x0100 - nOpacity);
439                                     rDest.setRed((sal_uInt8)(((rDest.getRed() * nTransparence) + ((sal_uInt16)(255.0 * aNewColor.getRed()) * nOpacity)) >> 8));
440                                     rDest.setGreen((sal_uInt8)(((rDest.getGreen() * nTransparence) + ((sal_uInt16)(255.0 * aNewColor.getGreen()) * nOpacity)) >> 8));
441                                     rDest.setBlue((sal_uInt8)(((rDest.getBlue() * nTransparence) + ((sal_uInt16)(255.0 * aNewColor.getBlue()) * nOpacity)) >> 8));
442 
443                                     if(0xff != rDest.getOpacity())
444                                     {
445                                         // both are transparent, mix new opacity by using
446                                         // opacity = newopacity * (1 - oldopacity) + oldopacity
447                                         rDest.setOpacity(((sal_uInt8)((nOpacity * (0x0100 - rDest.getOpacity())) >> 8)) + rDest.getOpacity());
448                                     }
449                                 }
450                                 else
451                                 {
452                                     // dest is unused, set color
453                                     rDest = basegfx::BPixel(aNewColor, (sal_uInt8)nOpacity);
454                                 }
455                             }
456                         }
457                     }
458 
459                     // increments
460                     nScanlineIndex++;
461                     nXA++;
462                     incrementLineSpanInterpolators(1.0);
463                 }
464             }
465         }
466     }
467 }
468 
469 //////////////////////////////////////////////////////////////////////////////
470 // helper class to buffer output for transparent rasterprimitives (filled areas
471 // and lines) until the end of processing. To ensure correct transparent
472 // visualisation, ZBuffers require to not set Z and to mix with the transparent
473 // color. If transparent rasterprimitives overlap, it gets necessary to
474 // paint transparent rasterprimitives from back to front to ensure that the
475 // mixing happens from back to front. For that purpose, transparent
476 // rasterprimitives are held in this class during the processing run, remember
477 // all data and will be rendered
478 
479 class RasterPrimitive3D
480 {
481 private:
482     boost::shared_ptr< drawinglayer::texture::GeoTexSvx >     mpGeoTexSvx;
483     boost::shared_ptr< drawinglayer::texture::GeoTexSvx >     mpTransparenceGeoTexSvx;
484     drawinglayer::attribute::MaterialAttribute3D              maMaterial;
485     basegfx::B3DPolyPolygon                                   maPolyPolygon;
486     double                                                    mfCenterZ;
487 
488     // bitfield
489     bool                                                      mbModulate : 1;
490     bool                                                      mbFilter : 1;
491     bool                                                      mbSimpleTextureActive : 1;
492     bool                                                      mbIsLine : 1;
493 
494 public:
RasterPrimitive3D(const boost::shared_ptr<drawinglayer::texture::GeoTexSvx> & pGeoTexSvx,const boost::shared_ptr<drawinglayer::texture::GeoTexSvx> & pTransparenceGeoTexSvx,const drawinglayer::attribute::MaterialAttribute3D & rMaterial,const basegfx::B3DPolyPolygon & rPolyPolygon,bool bModulate,bool bFilter,bool bSimpleTextureActive,bool bIsLine)495     RasterPrimitive3D(
496         const boost::shared_ptr< drawinglayer::texture::GeoTexSvx >& pGeoTexSvx,
497         const boost::shared_ptr< drawinglayer::texture::GeoTexSvx >& pTransparenceGeoTexSvx,
498         const drawinglayer::attribute::MaterialAttribute3D& rMaterial,
499         const basegfx::B3DPolyPolygon& rPolyPolygon,
500         bool bModulate,
501         bool bFilter,
502         bool bSimpleTextureActive,
503         bool bIsLine)
504     :   mpGeoTexSvx(pGeoTexSvx),
505         mpTransparenceGeoTexSvx(pTransparenceGeoTexSvx),
506         maMaterial(rMaterial),
507         maPolyPolygon(rPolyPolygon),
508         mfCenterZ(basegfx::tools::getRange(rPolyPolygon).getCenter().getZ()),
509         mbModulate(bModulate),
510         mbFilter(bFilter),
511         mbSimpleTextureActive(bSimpleTextureActive),
512         mbIsLine(bIsLine)
513     {
514     }
515 
operator =(const RasterPrimitive3D & rComp)516     RasterPrimitive3D& operator=(const RasterPrimitive3D& rComp)
517     {
518         mpGeoTexSvx = rComp.mpGeoTexSvx;
519         mpTransparenceGeoTexSvx = rComp.mpTransparenceGeoTexSvx;
520         maMaterial = rComp.maMaterial;
521         maPolyPolygon = rComp.maPolyPolygon;
522         mfCenterZ = rComp.mfCenterZ;
523         mbModulate = rComp.mbModulate;
524         mbFilter = rComp.mbFilter;
525         mbSimpleTextureActive = rComp.mbSimpleTextureActive;
526         mbIsLine = rComp.mbIsLine;
527 
528         return *this;
529     }
530 
operator <(const RasterPrimitive3D & rComp) const531     bool operator<(const RasterPrimitive3D& rComp) const
532     {
533         return mfCenterZ < rComp.mfCenterZ;
534     }
535 
getGeoTexSvx() const536     const boost::shared_ptr< drawinglayer::texture::GeoTexSvx >& getGeoTexSvx() const { return mpGeoTexSvx; }
getTransparenceGeoTexSvx() const537     const boost::shared_ptr< drawinglayer::texture::GeoTexSvx >& getTransparenceGeoTexSvx() const { return mpTransparenceGeoTexSvx; }
getMaterial() const538     const drawinglayer::attribute::MaterialAttribute3D& getMaterial() const { return maMaterial; }
getPolyPolygon() const539     const basegfx::B3DPolyPolygon& getPolyPolygon() const { return maPolyPolygon; }
getModulate() const540     bool getModulate() const { return mbModulate; }
getFilter() const541     bool getFilter() const { return mbFilter; }
getSimpleTextureActive() const542     bool getSimpleTextureActive() const { return mbSimpleTextureActive; }
getIsLine() const543     bool getIsLine() const { return mbIsLine; }
544 };
545 
546 //////////////////////////////////////////////////////////////////////////////
547 
548 namespace drawinglayer
549 {
550     namespace processor3d
551     {
rasterconvertB3DPolygon(const attribute::MaterialAttribute3D & rMaterial,const basegfx::B3DPolygon & rHairline) const552         void ZBufferProcessor3D::rasterconvertB3DPolygon(const attribute::MaterialAttribute3D& rMaterial, const basegfx::B3DPolygon& rHairline) const
553         {
554             if(mpBZPixelRaster)
555             {
556                 if(getTransparenceCounter())
557                 {
558                     // transparent output; record for later sorting and painting from
559                     // back to front
560                     if(!mpRasterPrimitive3Ds)
561                     {
562                         const_cast< ZBufferProcessor3D* >(this)->mpRasterPrimitive3Ds = new std::vector< RasterPrimitive3D >;
563                     }
564 
565                     mpRasterPrimitive3Ds->push_back(RasterPrimitive3D(
566                         getGeoTexSvx(),
567                         getTransparenceGeoTexSvx(),
568                         rMaterial,
569                         basegfx::B3DPolyPolygon(rHairline),
570                         getModulate(),
571                         getFilter(),
572                         getSimpleTextureActive(),
573                         true));
574                 }
575                 else
576                 {
577                     // do rasterconversion
578                     mpZBufferRasterConverter3D->setCurrentMaterial(rMaterial);
579 
580                     if(mnAntiAlialize > 1)
581                     {
582                         const bool bForceLineSnap(getOptionsDrawinglayer().IsAntiAliasing() && getOptionsDrawinglayer().IsSnapHorVerLinesToDiscrete());
583 
584                         if(bForceLineSnap)
585                         {
586                             basegfx::B3DHomMatrix aTransform;
587                             basegfx::B3DPolygon aSnappedHairline(rHairline);
588                             const double fScaleDown(1.0 / mnAntiAlialize);
589                             const double fScaleUp(mnAntiAlialize);
590 
591                             // take oversampling out
592                             aTransform.scale(fScaleDown, fScaleDown, 1.0);
593                             aSnappedHairline.transform(aTransform);
594 
595                             // snap to integer
596                             aSnappedHairline = basegfx::tools::snapPointsOfHorizontalOrVerticalEdges(aSnappedHairline);
597 
598                             // add oversampling again
599                             aTransform.identity();
600                             aTransform.scale(fScaleUp, fScaleUp, 1.0);
601 
602                             if(false)
603                             {
604                                 // when really want to go to single pixel lines, move to center.
605                                 // Without this translation, all hor/ver hairlines will be centered exactly
606                                 // between two pixel lines (which looks best)
607                                 const double fTranslateToCenter(mnAntiAlialize * 0.5);
608                                 aTransform.translate(fTranslateToCenter, fTranslateToCenter, 0.0);
609                             }
610 
611                             aSnappedHairline.transform(aTransform);
612 
613                             mpZBufferRasterConverter3D->rasterconvertB3DPolygon(aSnappedHairline, 0, mpBZPixelRaster->getHeight(), mnAntiAlialize);
614                         }
615                         else
616                         {
617                             mpZBufferRasterConverter3D->rasterconvertB3DPolygon(rHairline, 0, mpBZPixelRaster->getHeight(), mnAntiAlialize);
618                         }
619                     }
620                     else
621                     {
622                         mpZBufferRasterConverter3D->rasterconvertB3DPolygon(rHairline, 0, mpBZPixelRaster->getHeight(), 1);
623                     }
624                 }
625             }
626         }
627 
rasterconvertB3DPolyPolygon(const attribute::MaterialAttribute3D & rMaterial,const basegfx::B3DPolyPolygon & rFill) const628         void ZBufferProcessor3D::rasterconvertB3DPolyPolygon(const attribute::MaterialAttribute3D& rMaterial, const basegfx::B3DPolyPolygon& rFill) const
629         {
630             if(mpBZPixelRaster)
631             {
632                 if(getTransparenceCounter())
633                 {
634                     // transparent output; record for later sorting and painting from
635                     // back to front
636                     if(!mpRasterPrimitive3Ds)
637                     {
638                         const_cast< ZBufferProcessor3D* >(this)->mpRasterPrimitive3Ds = new std::vector< RasterPrimitive3D >;
639                     }
640 
641                     mpRasterPrimitive3Ds->push_back(RasterPrimitive3D(
642                         getGeoTexSvx(),
643                         getTransparenceGeoTexSvx(),
644                         rMaterial,
645                         rFill,
646                         getModulate(),
647                         getFilter(),
648                         getSimpleTextureActive(),
649                         false));
650                 }
651                 else
652                 {
653                     mpZBufferRasterConverter3D->setCurrentMaterial(rMaterial);
654                     mpZBufferRasterConverter3D->rasterconvertB3DPolyPolygon(rFill, &maInvEyeToView, 0, mpBZPixelRaster->getHeight());
655                 }
656             }
657         }
658 
ZBufferProcessor3D(const geometry::ViewInformation3D & rViewInformation3D,const geometry::ViewInformation2D & rViewInformation2D,const attribute::SdrSceneAttribute & rSdrSceneAttribute,const attribute::SdrLightingAttribute & rSdrLightingAttribute,double fSizeX,double fSizeY,const basegfx::B2DRange & rVisiblePart,sal_uInt16 nAntiAlialize)659         ZBufferProcessor3D::ZBufferProcessor3D(
660             const geometry::ViewInformation3D& rViewInformation3D,
661             const geometry::ViewInformation2D& rViewInformation2D,
662             const attribute::SdrSceneAttribute& rSdrSceneAttribute,
663             const attribute::SdrLightingAttribute& rSdrLightingAttribute,
664             double fSizeX,
665             double fSizeY,
666             const basegfx::B2DRange& rVisiblePart,
667             sal_uInt16 nAntiAlialize)
668         :   DefaultProcessor3D(rViewInformation3D, rSdrSceneAttribute, rSdrLightingAttribute),
669             mpBZPixelRaster(0),
670             maInvEyeToView(),
671             mpZBufferRasterConverter3D(0),
672             mnAntiAlialize(nAntiAlialize),
673             mpRasterPrimitive3Ds(0)
674         {
675             // generate ViewSizes
676             const double fFullViewSizeX((rViewInformation2D.getObjectToViewTransformation() * basegfx::B2DVector(fSizeX, 0.0)).getLength());
677             const double fFullViewSizeY((rViewInformation2D.getObjectToViewTransformation() * basegfx::B2DVector(0.0, fSizeY)).getLength());
678             const double fViewSizeX(fFullViewSizeX * rVisiblePart.getWidth());
679             const double fViewSizeY(fFullViewSizeY * rVisiblePart.getHeight());
680 
681             // generate RasterWidth and RasterHeight
682             const sal_uInt32 nRasterWidth((sal_uInt32)basegfx::fround(fViewSizeX) + 1);
683             const sal_uInt32 nRasterHeight((sal_uInt32)basegfx::fround(fViewSizeY) + 1);
684 
685             if(nRasterWidth && nRasterHeight)
686             {
687                 // create view unit buffer
688                 mpBZPixelRaster = new basegfx::BZPixelRaster(
689                     mnAntiAlialize ? nRasterWidth * mnAntiAlialize : nRasterWidth,
690                     mnAntiAlialize ? nRasterHeight * mnAntiAlialize : nRasterHeight);
691                 OSL_ENSURE(mpBZPixelRaster, "ZBufferProcessor3D: Could not allocate basegfx::BZPixelRaster (!)");
692 
693                 // create DeviceToView for Z-Buffer renderer since Z is handled
694                 // different from standard 3D transformations (Z is mirrored). Also
695                 // the transformation includes the step from unit device coordinates
696                 // to discrete units ([-1.0 .. 1.0] -> [minDiscrete .. maxDiscrete]
697 
698                 basegfx::B3DHomMatrix aDeviceToView;
699 
700                 {
701                     // step one:
702                     //
703                     // bring from [-1.0 .. 1.0] in X,Y and Z to [0.0 .. 1.0]. Also
704                     // necessary to
705                     // - flip Y due to screen orientation
706                     // - flip Z due to Z-Buffer orientation from back to front
707 
708                     aDeviceToView.scale(0.5, -0.5, -0.5);
709                     aDeviceToView.translate(0.5, 0.5, 0.5);
710                 }
711 
712                 {
713                     // step two:
714                     //
715                     // bring from [0.0 .. 1.0] in X,Y and Z to view cordinates
716                     //
717                     // #i102611#
718                     // also: scale Z to [1.5 .. 65534.5]. Normally, a range of [0.0 .. 65535.0]
719                     // could be used, but a 'unused' value is needed, so '0' is used what reduces
720                     // the range to [1.0 .. 65535.0]. It has also shown that small numerical errors
721                     // (smaller as basegfx::fTools::mfSmallValue, which is 0.000000001) happen.
722                     // Instead of checking those by basegfx::fTools methods which would cost
723                     // runtime, just add another 0.5 tolerance to the start and end of the Z-Buffer
724                     // range, thus resulting in [1.5 .. 65534.5]
725                     const double fMaxZDepth(65533.0);
726                     aDeviceToView.translate(-rVisiblePart.getMinX(), -rVisiblePart.getMinY(), 0.0);
727 
728                     if(mnAntiAlialize)
729                         aDeviceToView.scale(fFullViewSizeX * mnAntiAlialize, fFullViewSizeY * mnAntiAlialize, fMaxZDepth);
730                     else
731                         aDeviceToView.scale(fFullViewSizeX, fFullViewSizeY, fMaxZDepth);
732 
733                     aDeviceToView.translate(0.0, 0.0, 1.5);
734                 }
735 
736                 // update local ViewInformation3D with own DeviceToView
737                 const geometry::ViewInformation3D aNewViewInformation3D(
738                     getViewInformation3D().getObjectTransformation(),
739                     getViewInformation3D().getOrientation(),
740                     getViewInformation3D().getProjection(),
741                     aDeviceToView,
742                     getViewInformation3D().getViewTime(),
743                     getViewInformation3D().getExtendedInformationSequence());
744                 updateViewInformation(aNewViewInformation3D);
745 
746                 // prepare inverse EyeToView transformation. This can be done in constructor
747                 // since changes in object transformations when processing TransformPrimitive3Ds
748                 // do not influence this prepared partial transformation
749                 maInvEyeToView = getViewInformation3D().getDeviceToView() * getViewInformation3D().getProjection();
750                 maInvEyeToView.invert();
751 
752                 // prepare maRasterRange
753                 maRasterRange.reset();
754                 maRasterRange.expand(basegfx::B2DPoint(0.0, 0.0));
755                 maRasterRange.expand(basegfx::B2DPoint(mpBZPixelRaster->getWidth(), mpBZPixelRaster->getHeight()));
756 
757                 // create the raster converter
758                 mpZBufferRasterConverter3D = new ZBufferRasterConverter3D(*mpBZPixelRaster, *this);
759             }
760         }
761 
~ZBufferProcessor3D()762         ZBufferProcessor3D::~ZBufferProcessor3D()
763         {
764             if(mpBZPixelRaster)
765             {
766                 delete mpZBufferRasterConverter3D;
767                 delete mpBZPixelRaster;
768             }
769 
770             if(mpRasterPrimitive3Ds)
771             {
772                 OSL_ASSERT("ZBufferProcessor3D: destructed, but there are unrendered transparent geometries. Use ZBufferProcessor3D::finish() to render these (!)");
773                 delete mpRasterPrimitive3Ds;
774             }
775         }
776 
finish()777         void ZBufferProcessor3D::finish()
778         {
779             if(mpRasterPrimitive3Ds)
780             {
781                 // there are transparent rasterprimitives
782                 const sal_uInt32 nSize(mpRasterPrimitive3Ds->size());
783 
784                 if(nSize > 1)
785                 {
786                     // sort them from back to front
787                     std::sort(mpRasterPrimitive3Ds->begin(), mpRasterPrimitive3Ds->end());
788                 }
789 
790                 for(sal_uInt32 a(0); a < nSize; a++)
791                 {
792                     // paint each one by setting the remembered data and calling
793                     // the render method
794                     const RasterPrimitive3D& rCandidate = (*mpRasterPrimitive3Ds)[a];
795 
796                     mpGeoTexSvx = rCandidate.getGeoTexSvx();
797                     mpTransparenceGeoTexSvx = rCandidate.getTransparenceGeoTexSvx();
798                     mbModulate = rCandidate.getModulate();
799                     mbFilter = rCandidate.getFilter();
800                     mbSimpleTextureActive = rCandidate.getSimpleTextureActive();
801 
802                     if(rCandidate.getIsLine())
803                     {
804                         rasterconvertB3DPolygon(
805                             rCandidate.getMaterial(),
806                             rCandidate.getPolyPolygon().getB3DPolygon(0));
807                     }
808                     else
809                     {
810                         rasterconvertB3DPolyPolygon(
811                             rCandidate.getMaterial(),
812                             rCandidate.getPolyPolygon());
813                     }
814                 }
815 
816                 // delete them to signal the destructor that all is done and
817                 // to allow asserting there
818                 delete mpRasterPrimitive3Ds;
819                 mpRasterPrimitive3Ds = 0;
820             }
821         }
822 
getBitmapEx() const823         BitmapEx ZBufferProcessor3D::getBitmapEx() const
824         {
825             if(mpBZPixelRaster)
826             {
827                 return BPixelRasterToBitmapEx(*mpBZPixelRaster, mnAntiAlialize);
828             }
829 
830             return BitmapEx();
831         }
832     } // end of namespace processor3d
833 } // end of namespace drawinglayer
834 
835 //////////////////////////////////////////////////////////////////////////////
836 // eof
837