xref: /AOO41X/main/basegfx/source/workbench/gauss.hxx (revision ce9c7ef7bd056b6da7d6eeebb749fbf2160d647b)
1 /**************************************************************
2  *
3  * Licensed to the Apache Software Foundation (ASF) under one
4  * or more contributor license agreements.  See the NOTICE file
5  * distributed with this work for additional information
6  * regarding copyright ownership.  The ASF licenses this file
7  * to you under the Apache License, Version 2.0 (the
8  * "License"); you may not use this file except in compliance
9  * with the License.  You may obtain a copy of the License at
10  *
11  *   http://www.apache.org/licenses/LICENSE-2.0
12  *
13  * Unless required by applicable law or agreed to in writing,
14  * software distributed under the License is distributed on an
15  * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
16  * KIND, either express or implied.  See the License for the
17  * specific language governing permissions and limitations
18  * under the License.
19  *
20  *************************************************************/
21 
22 
23 
24 /** This method eliminates elements below main diagonal in the given
25     matrix by gaussian elimination.
26 
27     @param matrix
28     The matrix to operate on. Last column is the result vector (right
29     hand side of the linear equation). After successful termination,
30     the matrix is upper triangular. The matrix is expected to be in
31     row major order.
32 
33     @param rows
34     Number of rows in matrix
35 
36     @param cols
37     Number of columns in matrix
38 
39     @param minPivot
40     If the pivot element gets lesser than minPivot, this method fails,
41     otherwise, elimination succeeds and true is returned.
42 
43     @return true, if elimination succeeded.
44  */
45 template <class Matrix, typename BaseType>
eliminate(Matrix & matrix,int rows,int cols,const BaseType & minPivot)46 bool eliminate(     Matrix&         matrix,
47                     int             rows,
48                     int             cols,
49                     const BaseType& minPivot    )
50 {
51     BaseType    temp;
52     int         max, i, j, k;   /* *must* be signed, when looping like: j>=0 ! */
53 
54     /* eliminate below main diagonal */
55     for(i=0; i<cols-1; ++i)
56     {
57         /* find best pivot */
58         max = i;
59         for(j=i+1; j<rows; ++j)
60             if( fabs(matrix[ j*cols + i ]) > fabs(matrix[ max*cols + i ]) )
61                 max = j;
62 
63         /* check pivot value */
64         if( fabs(matrix[ max*cols + i ]) < minPivot )
65             return false;   /* pivot too small! */
66 
67         /* interchange rows 'max' and 'i' */
68         for(k=0; k<cols; ++k)
69         {
70             temp = matrix[ i*cols + k ];
71             matrix[ i*cols + k ] = matrix[ max*cols + k ];
72             matrix[ max*cols + k ] = temp;
73         }
74 
75         /* eliminate column */
76         for(j=i+1; j<rows; ++j)
77             for(k=cols-1; k>=i; --k)
78                 matrix[ j*cols + k ] -= matrix[ i*cols + k ] *
79                     matrix[ j*cols + i ] / matrix[ i*cols + i ];
80     }
81 
82     /* everything went well */
83     return true;
84 }
85 
86 
87 /** Retrieve solution vector of linear system by substituting backwards.
88 
89     This operation _relies_ on the previous successful
90     application of eliminate()!
91 
92     @param matrix
93     Matrix in upper diagonal form, as e.g. generated by eliminate()
94 
95     @param rows
96     Number of rows in matrix
97 
98     @param cols
99     Number of columns in matrix
100 
101     @param result
102     Result vector. Given matrix must have space for one column (rows entries).
103 
104     @return true, if back substitution was possible (i.e. no division
105     by zero occured).
106  */
107 template <class Matrix, class Vector, typename BaseType>
substitute(const Matrix & matrix,int rows,int cols,Vector & result)108 bool substitute(    const Matrix&   matrix,
109                     int             rows,
110                     int             cols,
111                     Vector&         result  )
112 {
113     BaseType    temp;
114     int         j,k;    /* *must* be signed, when looping like: j>=0 ! */
115 
116     /* substitute backwards */
117     for(j=rows-1; j>=0; --j)
118     {
119         temp = 0.0;
120         for(k=j+1; k<cols-1; ++k)
121             temp += matrix[ j*cols + k ] * result[k];
122 
123         if( matrix[ j*cols + j ] == 0.0 )
124             return false;   /* imminent division by zero! */
125 
126         result[j] = (matrix[ j*cols + cols-1 ] - temp) / matrix[ j*cols + j ];
127     }
128 
129     /* everything went well */
130     return true;
131 }
132 
133 
134 /** This method determines solution of given linear system, if any
135 
136     This is a wrapper for eliminate and substitute, given matrix must
137     contain right side of equation as the last column.
138 
139     @param matrix
140     The matrix to operate on. Last column is the result vector (right
141     hand side of the linear equation). After successful termination,
142     the matrix is upper triangular. The matrix is expected to be in
143     row major order.
144 
145     @param rows
146     Number of rows in matrix
147 
148     @param cols
149     Number of columns in matrix
150 
151     @param minPivot
152     If the pivot element gets lesser than minPivot, this method fails,
153     otherwise, elimination succeeds and true is returned.
154 
155     @return true, if elimination succeeded.
156  */
157 template <class Matrix, class Vector, typename BaseType>
solve(Matrix & matrix,int rows,int cols,Vector & result,BaseType minPivot)158 bool solve( Matrix&     matrix,
159             int         rows,
160             int         cols,
161             Vector&     result,
162             BaseType    minPivot    )
163 {
164     if( eliminate<Matrix,BaseType>(matrix, rows, cols, minPivot) )
165         return substitute<Matrix,Vector,BaseType>(matrix, rows, cols, result);
166 
167     return false;
168 }
169