1*cdf0e10cSrcweir /************************************************************************* 2*cdf0e10cSrcweir * 3*cdf0e10cSrcweir * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4*cdf0e10cSrcweir * 5*cdf0e10cSrcweir * Copyright 2000, 2010 Oracle and/or its affiliates. 6*cdf0e10cSrcweir * 7*cdf0e10cSrcweir * OpenOffice.org - a multi-platform office productivity suite 8*cdf0e10cSrcweir * 9*cdf0e10cSrcweir * This file is part of OpenOffice.org. 10*cdf0e10cSrcweir * 11*cdf0e10cSrcweir * OpenOffice.org is free software: you can redistribute it and/or modify 12*cdf0e10cSrcweir * it under the terms of the GNU Lesser General Public License version 3 13*cdf0e10cSrcweir * only, as published by the Free Software Foundation. 14*cdf0e10cSrcweir * 15*cdf0e10cSrcweir * OpenOffice.org is distributed in the hope that it will be useful, 16*cdf0e10cSrcweir * but WITHOUT ANY WARRANTY; without even the implied warranty of 17*cdf0e10cSrcweir * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18*cdf0e10cSrcweir * GNU Lesser General Public License version 3 for more details 19*cdf0e10cSrcweir * (a copy is included in the LICENSE file that accompanied this code). 20*cdf0e10cSrcweir * 21*cdf0e10cSrcweir * You should have received a copy of the GNU Lesser General Public License 22*cdf0e10cSrcweir * version 3 along with OpenOffice.org. If not, see 23*cdf0e10cSrcweir * <http://www.openoffice.org/license.html> 24*cdf0e10cSrcweir * for a copy of the LGPLv3 License. 25*cdf0e10cSrcweir * 26*cdf0e10cSrcweir ************************************************************************/ 27*cdf0e10cSrcweir 28*cdf0e10cSrcweir // MARKER(update_precomp.py): autogen include statement, do not remove 29*cdf0e10cSrcweir #include "precompiled_basegfx.hxx" 30*cdf0e10cSrcweir #include <osl/diagnose.h> 31*cdf0e10cSrcweir #include <rtl/instance.hxx> 32*cdf0e10cSrcweir #include <basegfx/matrix/b2dhommatrix.hxx> 33*cdf0e10cSrcweir #include <hommatrixtemplate.hxx> 34*cdf0e10cSrcweir #include <basegfx/tuple/b2dtuple.hxx> 35*cdf0e10cSrcweir #include <basegfx/vector/b2dvector.hxx> 36*cdf0e10cSrcweir #include <basegfx/matrix/b2dhommatrixtools.hxx> 37*cdf0e10cSrcweir 38*cdf0e10cSrcweir /////////////////////////////////////////////////////////////////////////////// 39*cdf0e10cSrcweir 40*cdf0e10cSrcweir namespace basegfx 41*cdf0e10cSrcweir { 42*cdf0e10cSrcweir class Impl2DHomMatrix : public ::basegfx::internal::ImplHomMatrixTemplate< 3 > 43*cdf0e10cSrcweir { 44*cdf0e10cSrcweir }; 45*cdf0e10cSrcweir 46*cdf0e10cSrcweir namespace { struct IdentityMatrix : public rtl::Static< B2DHomMatrix::ImplType, 47*cdf0e10cSrcweir IdentityMatrix > {}; } 48*cdf0e10cSrcweir 49*cdf0e10cSrcweir B2DHomMatrix::B2DHomMatrix() : 50*cdf0e10cSrcweir mpImpl( IdentityMatrix::get() ) // use common identity matrix 51*cdf0e10cSrcweir { 52*cdf0e10cSrcweir } 53*cdf0e10cSrcweir 54*cdf0e10cSrcweir B2DHomMatrix::B2DHomMatrix(const B2DHomMatrix& rMat) : 55*cdf0e10cSrcweir mpImpl(rMat.mpImpl) 56*cdf0e10cSrcweir { 57*cdf0e10cSrcweir } 58*cdf0e10cSrcweir 59*cdf0e10cSrcweir B2DHomMatrix::~B2DHomMatrix() 60*cdf0e10cSrcweir { 61*cdf0e10cSrcweir } 62*cdf0e10cSrcweir 63*cdf0e10cSrcweir B2DHomMatrix::B2DHomMatrix(double f_0x0, double f_0x1, double f_0x2, double f_1x0, double f_1x1, double f_1x2) 64*cdf0e10cSrcweir : mpImpl( IdentityMatrix::get() ) // use common identity matrix, will be made unique with 1st set-call 65*cdf0e10cSrcweir { 66*cdf0e10cSrcweir mpImpl->set(0, 0, f_0x0); 67*cdf0e10cSrcweir mpImpl->set(0, 1, f_0x1); 68*cdf0e10cSrcweir mpImpl->set(0, 2, f_0x2); 69*cdf0e10cSrcweir mpImpl->set(1, 0, f_1x0); 70*cdf0e10cSrcweir mpImpl->set(1, 1, f_1x1); 71*cdf0e10cSrcweir mpImpl->set(1, 2, f_1x2); 72*cdf0e10cSrcweir } 73*cdf0e10cSrcweir 74*cdf0e10cSrcweir B2DHomMatrix& B2DHomMatrix::operator=(const B2DHomMatrix& rMat) 75*cdf0e10cSrcweir { 76*cdf0e10cSrcweir mpImpl = rMat.mpImpl; 77*cdf0e10cSrcweir return *this; 78*cdf0e10cSrcweir } 79*cdf0e10cSrcweir 80*cdf0e10cSrcweir void B2DHomMatrix::makeUnique() 81*cdf0e10cSrcweir { 82*cdf0e10cSrcweir mpImpl.make_unique(); 83*cdf0e10cSrcweir } 84*cdf0e10cSrcweir 85*cdf0e10cSrcweir double B2DHomMatrix::get(sal_uInt16 nRow, sal_uInt16 nColumn) const 86*cdf0e10cSrcweir { 87*cdf0e10cSrcweir return mpImpl->get(nRow, nColumn); 88*cdf0e10cSrcweir } 89*cdf0e10cSrcweir 90*cdf0e10cSrcweir void B2DHomMatrix::set(sal_uInt16 nRow, sal_uInt16 nColumn, double fValue) 91*cdf0e10cSrcweir { 92*cdf0e10cSrcweir mpImpl->set(nRow, nColumn, fValue); 93*cdf0e10cSrcweir } 94*cdf0e10cSrcweir 95*cdf0e10cSrcweir void B2DHomMatrix::set3x2(double f_0x0, double f_0x1, double f_0x2, double f_1x0, double f_1x1, double f_1x2) 96*cdf0e10cSrcweir { 97*cdf0e10cSrcweir mpImpl->set(0, 0, f_0x0); 98*cdf0e10cSrcweir mpImpl->set(0, 1, f_0x1); 99*cdf0e10cSrcweir mpImpl->set(0, 2, f_0x2); 100*cdf0e10cSrcweir mpImpl->set(1, 0, f_1x0); 101*cdf0e10cSrcweir mpImpl->set(1, 1, f_1x1); 102*cdf0e10cSrcweir mpImpl->set(1, 2, f_1x2); 103*cdf0e10cSrcweir } 104*cdf0e10cSrcweir 105*cdf0e10cSrcweir bool B2DHomMatrix::isLastLineDefault() const 106*cdf0e10cSrcweir { 107*cdf0e10cSrcweir return mpImpl->isLastLineDefault(); 108*cdf0e10cSrcweir } 109*cdf0e10cSrcweir 110*cdf0e10cSrcweir bool B2DHomMatrix::isIdentity() const 111*cdf0e10cSrcweir { 112*cdf0e10cSrcweir if(mpImpl.same_object(IdentityMatrix::get())) 113*cdf0e10cSrcweir return true; 114*cdf0e10cSrcweir 115*cdf0e10cSrcweir return mpImpl->isIdentity(); 116*cdf0e10cSrcweir } 117*cdf0e10cSrcweir 118*cdf0e10cSrcweir void B2DHomMatrix::identity() 119*cdf0e10cSrcweir { 120*cdf0e10cSrcweir mpImpl = IdentityMatrix::get(); 121*cdf0e10cSrcweir } 122*cdf0e10cSrcweir 123*cdf0e10cSrcweir bool B2DHomMatrix::isInvertible() const 124*cdf0e10cSrcweir { 125*cdf0e10cSrcweir return mpImpl->isInvertible(); 126*cdf0e10cSrcweir } 127*cdf0e10cSrcweir 128*cdf0e10cSrcweir bool B2DHomMatrix::invert() 129*cdf0e10cSrcweir { 130*cdf0e10cSrcweir Impl2DHomMatrix aWork(*mpImpl); 131*cdf0e10cSrcweir sal_uInt16* pIndex = new sal_uInt16[mpImpl->getEdgeLength()]; 132*cdf0e10cSrcweir sal_Int16 nParity; 133*cdf0e10cSrcweir 134*cdf0e10cSrcweir if(aWork.ludcmp(pIndex, nParity)) 135*cdf0e10cSrcweir { 136*cdf0e10cSrcweir mpImpl->doInvert(aWork, pIndex); 137*cdf0e10cSrcweir delete[] pIndex; 138*cdf0e10cSrcweir 139*cdf0e10cSrcweir return true; 140*cdf0e10cSrcweir } 141*cdf0e10cSrcweir 142*cdf0e10cSrcweir delete[] pIndex; 143*cdf0e10cSrcweir return false; 144*cdf0e10cSrcweir } 145*cdf0e10cSrcweir 146*cdf0e10cSrcweir bool B2DHomMatrix::isNormalized() const 147*cdf0e10cSrcweir { 148*cdf0e10cSrcweir return mpImpl->isNormalized(); 149*cdf0e10cSrcweir } 150*cdf0e10cSrcweir 151*cdf0e10cSrcweir void B2DHomMatrix::normalize() 152*cdf0e10cSrcweir { 153*cdf0e10cSrcweir if(!const_cast<const B2DHomMatrix*>(this)->mpImpl->isNormalized()) 154*cdf0e10cSrcweir mpImpl->doNormalize(); 155*cdf0e10cSrcweir } 156*cdf0e10cSrcweir 157*cdf0e10cSrcweir double B2DHomMatrix::determinant() const 158*cdf0e10cSrcweir { 159*cdf0e10cSrcweir return mpImpl->doDeterminant(); 160*cdf0e10cSrcweir } 161*cdf0e10cSrcweir 162*cdf0e10cSrcweir double B2DHomMatrix::trace() const 163*cdf0e10cSrcweir { 164*cdf0e10cSrcweir return mpImpl->doTrace(); 165*cdf0e10cSrcweir } 166*cdf0e10cSrcweir 167*cdf0e10cSrcweir void B2DHomMatrix::transpose() 168*cdf0e10cSrcweir { 169*cdf0e10cSrcweir mpImpl->doTranspose(); 170*cdf0e10cSrcweir } 171*cdf0e10cSrcweir 172*cdf0e10cSrcweir B2DHomMatrix& B2DHomMatrix::operator+=(const B2DHomMatrix& rMat) 173*cdf0e10cSrcweir { 174*cdf0e10cSrcweir mpImpl->doAddMatrix(*rMat.mpImpl); 175*cdf0e10cSrcweir return *this; 176*cdf0e10cSrcweir } 177*cdf0e10cSrcweir 178*cdf0e10cSrcweir B2DHomMatrix& B2DHomMatrix::operator-=(const B2DHomMatrix& rMat) 179*cdf0e10cSrcweir { 180*cdf0e10cSrcweir mpImpl->doSubMatrix(*rMat.mpImpl); 181*cdf0e10cSrcweir return *this; 182*cdf0e10cSrcweir } 183*cdf0e10cSrcweir 184*cdf0e10cSrcweir B2DHomMatrix& B2DHomMatrix::operator*=(double fValue) 185*cdf0e10cSrcweir { 186*cdf0e10cSrcweir const double fOne(1.0); 187*cdf0e10cSrcweir 188*cdf0e10cSrcweir if(!fTools::equal(fOne, fValue)) 189*cdf0e10cSrcweir mpImpl->doMulMatrix(fValue); 190*cdf0e10cSrcweir 191*cdf0e10cSrcweir return *this; 192*cdf0e10cSrcweir } 193*cdf0e10cSrcweir 194*cdf0e10cSrcweir B2DHomMatrix& B2DHomMatrix::operator/=(double fValue) 195*cdf0e10cSrcweir { 196*cdf0e10cSrcweir const double fOne(1.0); 197*cdf0e10cSrcweir 198*cdf0e10cSrcweir if(!fTools::equal(fOne, fValue)) 199*cdf0e10cSrcweir mpImpl->doMulMatrix(1.0 / fValue); 200*cdf0e10cSrcweir 201*cdf0e10cSrcweir return *this; 202*cdf0e10cSrcweir } 203*cdf0e10cSrcweir 204*cdf0e10cSrcweir B2DHomMatrix& B2DHomMatrix::operator*=(const B2DHomMatrix& rMat) 205*cdf0e10cSrcweir { 206*cdf0e10cSrcweir if(!rMat.isIdentity()) 207*cdf0e10cSrcweir mpImpl->doMulMatrix(*rMat.mpImpl); 208*cdf0e10cSrcweir 209*cdf0e10cSrcweir return *this; 210*cdf0e10cSrcweir } 211*cdf0e10cSrcweir 212*cdf0e10cSrcweir bool B2DHomMatrix::operator==(const B2DHomMatrix& rMat) const 213*cdf0e10cSrcweir { 214*cdf0e10cSrcweir if(mpImpl.same_object(rMat.mpImpl)) 215*cdf0e10cSrcweir return true; 216*cdf0e10cSrcweir 217*cdf0e10cSrcweir return mpImpl->isEqual(*rMat.mpImpl); 218*cdf0e10cSrcweir } 219*cdf0e10cSrcweir 220*cdf0e10cSrcweir bool B2DHomMatrix::operator!=(const B2DHomMatrix& rMat) const 221*cdf0e10cSrcweir { 222*cdf0e10cSrcweir return !(*this == rMat); 223*cdf0e10cSrcweir } 224*cdf0e10cSrcweir 225*cdf0e10cSrcweir void B2DHomMatrix::rotate(double fRadiant) 226*cdf0e10cSrcweir { 227*cdf0e10cSrcweir if(!fTools::equalZero(fRadiant)) 228*cdf0e10cSrcweir { 229*cdf0e10cSrcweir double fSin(0.0); 230*cdf0e10cSrcweir double fCos(1.0); 231*cdf0e10cSrcweir 232*cdf0e10cSrcweir tools::createSinCosOrthogonal(fSin, fCos, fRadiant); 233*cdf0e10cSrcweir Impl2DHomMatrix aRotMat; 234*cdf0e10cSrcweir 235*cdf0e10cSrcweir aRotMat.set(0, 0, fCos); 236*cdf0e10cSrcweir aRotMat.set(1, 1, fCos); 237*cdf0e10cSrcweir aRotMat.set(1, 0, fSin); 238*cdf0e10cSrcweir aRotMat.set(0, 1, -fSin); 239*cdf0e10cSrcweir 240*cdf0e10cSrcweir mpImpl->doMulMatrix(aRotMat); 241*cdf0e10cSrcweir } 242*cdf0e10cSrcweir } 243*cdf0e10cSrcweir 244*cdf0e10cSrcweir void B2DHomMatrix::translate(double fX, double fY) 245*cdf0e10cSrcweir { 246*cdf0e10cSrcweir if(!fTools::equalZero(fX) || !fTools::equalZero(fY)) 247*cdf0e10cSrcweir { 248*cdf0e10cSrcweir Impl2DHomMatrix aTransMat; 249*cdf0e10cSrcweir 250*cdf0e10cSrcweir aTransMat.set(0, 2, fX); 251*cdf0e10cSrcweir aTransMat.set(1, 2, fY); 252*cdf0e10cSrcweir 253*cdf0e10cSrcweir mpImpl->doMulMatrix(aTransMat); 254*cdf0e10cSrcweir } 255*cdf0e10cSrcweir } 256*cdf0e10cSrcweir 257*cdf0e10cSrcweir void B2DHomMatrix::scale(double fX, double fY) 258*cdf0e10cSrcweir { 259*cdf0e10cSrcweir const double fOne(1.0); 260*cdf0e10cSrcweir 261*cdf0e10cSrcweir if(!fTools::equal(fOne, fX) || !fTools::equal(fOne, fY)) 262*cdf0e10cSrcweir { 263*cdf0e10cSrcweir Impl2DHomMatrix aScaleMat; 264*cdf0e10cSrcweir 265*cdf0e10cSrcweir aScaleMat.set(0, 0, fX); 266*cdf0e10cSrcweir aScaleMat.set(1, 1, fY); 267*cdf0e10cSrcweir 268*cdf0e10cSrcweir mpImpl->doMulMatrix(aScaleMat); 269*cdf0e10cSrcweir } 270*cdf0e10cSrcweir } 271*cdf0e10cSrcweir 272*cdf0e10cSrcweir void B2DHomMatrix::shearX(double fSx) 273*cdf0e10cSrcweir { 274*cdf0e10cSrcweir // #i76239# do not test againt 1.0, but against 0.0. We are talking about a value not on the diagonal (!) 275*cdf0e10cSrcweir if(!fTools::equalZero(fSx)) 276*cdf0e10cSrcweir { 277*cdf0e10cSrcweir Impl2DHomMatrix aShearXMat; 278*cdf0e10cSrcweir 279*cdf0e10cSrcweir aShearXMat.set(0, 1, fSx); 280*cdf0e10cSrcweir 281*cdf0e10cSrcweir mpImpl->doMulMatrix(aShearXMat); 282*cdf0e10cSrcweir } 283*cdf0e10cSrcweir } 284*cdf0e10cSrcweir 285*cdf0e10cSrcweir void B2DHomMatrix::shearY(double fSy) 286*cdf0e10cSrcweir { 287*cdf0e10cSrcweir // #i76239# do not test againt 1.0, but against 0.0. We are talking about a value not on the diagonal (!) 288*cdf0e10cSrcweir if(!fTools::equalZero(fSy)) 289*cdf0e10cSrcweir { 290*cdf0e10cSrcweir Impl2DHomMatrix aShearYMat; 291*cdf0e10cSrcweir 292*cdf0e10cSrcweir aShearYMat.set(1, 0, fSy); 293*cdf0e10cSrcweir 294*cdf0e10cSrcweir mpImpl->doMulMatrix(aShearYMat); 295*cdf0e10cSrcweir } 296*cdf0e10cSrcweir } 297*cdf0e10cSrcweir 298*cdf0e10cSrcweir /** Decomposition 299*cdf0e10cSrcweir 300*cdf0e10cSrcweir New, optimized version with local shearX detection. Old version (keeping 301*cdf0e10cSrcweir below, is working well, too) used the 3D matrix decomposition when 302*cdf0e10cSrcweir shear was used. Keeping old version as comment below since it may get 303*cdf0e10cSrcweir necessary to add the determinant() test from there here, too. 304*cdf0e10cSrcweir */ 305*cdf0e10cSrcweir bool B2DHomMatrix::decompose(B2DTuple& rScale, B2DTuple& rTranslate, double& rRotate, double& rShearX) const 306*cdf0e10cSrcweir { 307*cdf0e10cSrcweir // when perspective is used, decompose is not made here 308*cdf0e10cSrcweir if(!mpImpl->isLastLineDefault()) 309*cdf0e10cSrcweir { 310*cdf0e10cSrcweir return false; 311*cdf0e10cSrcweir } 312*cdf0e10cSrcweir 313*cdf0e10cSrcweir // reset rotate and shear and copy translation values in every case 314*cdf0e10cSrcweir rRotate = rShearX = 0.0; 315*cdf0e10cSrcweir rTranslate.setX(get(0, 2)); 316*cdf0e10cSrcweir rTranslate.setY(get(1, 2)); 317*cdf0e10cSrcweir 318*cdf0e10cSrcweir // test for rotation and shear 319*cdf0e10cSrcweir if(fTools::equalZero(get(0, 1)) && fTools::equalZero(get(1, 0))) 320*cdf0e10cSrcweir { 321*cdf0e10cSrcweir // no rotation and shear, copy scale values 322*cdf0e10cSrcweir rScale.setX(get(0, 0)); 323*cdf0e10cSrcweir rScale.setY(get(1, 1)); 324*cdf0e10cSrcweir } 325*cdf0e10cSrcweir else 326*cdf0e10cSrcweir { 327*cdf0e10cSrcweir // get the unit vectors of the transformation -> the perpendicular vectors 328*cdf0e10cSrcweir B2DVector aUnitVecX(get(0, 0), get(1, 0)); 329*cdf0e10cSrcweir B2DVector aUnitVecY(get(0, 1), get(1, 1)); 330*cdf0e10cSrcweir const double fScalarXY(aUnitVecX.scalar(aUnitVecY)); 331*cdf0e10cSrcweir 332*cdf0e10cSrcweir // Test if shear is zero. That's the case if the unit vectors in the matrix 333*cdf0e10cSrcweir // are perpendicular -> scalar is zero. This is also the case when one of 334*cdf0e10cSrcweir // the unit vectors is zero. 335*cdf0e10cSrcweir if(fTools::equalZero(fScalarXY)) 336*cdf0e10cSrcweir { 337*cdf0e10cSrcweir // calculate unsigned scale values 338*cdf0e10cSrcweir rScale.setX(aUnitVecX.getLength()); 339*cdf0e10cSrcweir rScale.setY(aUnitVecY.getLength()); 340*cdf0e10cSrcweir 341*cdf0e10cSrcweir // check unit vectors for zero lengths 342*cdf0e10cSrcweir const bool bXIsZero(fTools::equalZero(rScale.getX())); 343*cdf0e10cSrcweir const bool bYIsZero(fTools::equalZero(rScale.getY())); 344*cdf0e10cSrcweir 345*cdf0e10cSrcweir if(bXIsZero || bYIsZero) 346*cdf0e10cSrcweir { 347*cdf0e10cSrcweir // still extract as much as possible. Scalings are already set 348*cdf0e10cSrcweir if(!bXIsZero) 349*cdf0e10cSrcweir { 350*cdf0e10cSrcweir // get rotation of X-Axis 351*cdf0e10cSrcweir rRotate = atan2(aUnitVecX.getY(), aUnitVecX.getX()); 352*cdf0e10cSrcweir } 353*cdf0e10cSrcweir else if(!bYIsZero) 354*cdf0e10cSrcweir { 355*cdf0e10cSrcweir // get rotation of X-Axis. When assuming X and Y perpendicular 356*cdf0e10cSrcweir // and correct rotation, it's the Y-Axis rotation minus 90 degrees 357*cdf0e10cSrcweir rRotate = atan2(aUnitVecY.getY(), aUnitVecY.getX()) - M_PI_2; 358*cdf0e10cSrcweir } 359*cdf0e10cSrcweir 360*cdf0e10cSrcweir // one or both unit vectors do not extist, determinant is zero, no decomposition possible. 361*cdf0e10cSrcweir // Eventually used rotations or shears are lost 362*cdf0e10cSrcweir return false; 363*cdf0e10cSrcweir } 364*cdf0e10cSrcweir else 365*cdf0e10cSrcweir { 366*cdf0e10cSrcweir // no shear 367*cdf0e10cSrcweir // calculate rotation of X unit vector relative to (1, 0) 368*cdf0e10cSrcweir rRotate = atan2(aUnitVecX.getY(), aUnitVecX.getX()); 369*cdf0e10cSrcweir 370*cdf0e10cSrcweir // use orientation to evtl. correct sign of Y-Scale 371*cdf0e10cSrcweir const double fCrossXY(aUnitVecX.cross(aUnitVecY)); 372*cdf0e10cSrcweir 373*cdf0e10cSrcweir if(fCrossXY < 0.0) 374*cdf0e10cSrcweir { 375*cdf0e10cSrcweir rScale.setY(-rScale.getY()); 376*cdf0e10cSrcweir } 377*cdf0e10cSrcweir } 378*cdf0e10cSrcweir } 379*cdf0e10cSrcweir else 380*cdf0e10cSrcweir { 381*cdf0e10cSrcweir // fScalarXY is not zero, thus both unit vectors exist. No need to handle that here 382*cdf0e10cSrcweir // shear, extract it 383*cdf0e10cSrcweir double fCrossXY(aUnitVecX.cross(aUnitVecY)); 384*cdf0e10cSrcweir 385*cdf0e10cSrcweir // get rotation by calculating angle of X unit vector relative to (1, 0). 386*cdf0e10cSrcweir // This is before the parallell test following the motto to extract 387*cdf0e10cSrcweir // as much as possible 388*cdf0e10cSrcweir rRotate = atan2(aUnitVecX.getY(), aUnitVecX.getX()); 389*cdf0e10cSrcweir 390*cdf0e10cSrcweir // get unsigned scale value for X. It will not change and is useful 391*cdf0e10cSrcweir // for further corrections 392*cdf0e10cSrcweir rScale.setX(aUnitVecX.getLength()); 393*cdf0e10cSrcweir 394*cdf0e10cSrcweir if(fTools::equalZero(fCrossXY)) 395*cdf0e10cSrcweir { 396*cdf0e10cSrcweir // extract as much as possible 397*cdf0e10cSrcweir rScale.setY(aUnitVecY.getLength()); 398*cdf0e10cSrcweir 399*cdf0e10cSrcweir // unit vectors are parallel, thus not linear independent. No 400*cdf0e10cSrcweir // useful decomposition possible. This should not happen since 401*cdf0e10cSrcweir // the only way to get the unit vectors nearly parallell is 402*cdf0e10cSrcweir // a very big shearing. Anyways, be prepared for hand-filled 403*cdf0e10cSrcweir // matrices 404*cdf0e10cSrcweir // Eventually used rotations or shears are lost 405*cdf0e10cSrcweir return false; 406*cdf0e10cSrcweir } 407*cdf0e10cSrcweir else 408*cdf0e10cSrcweir { 409*cdf0e10cSrcweir // calculate the contained shear 410*cdf0e10cSrcweir rShearX = fScalarXY / fCrossXY; 411*cdf0e10cSrcweir 412*cdf0e10cSrcweir if(!fTools::equalZero(rRotate)) 413*cdf0e10cSrcweir { 414*cdf0e10cSrcweir // To be able to correct the shear for aUnitVecY, rotation needs to be 415*cdf0e10cSrcweir // removed first. Correction of aUnitVecX is easy, it will be rotated back to (1, 0). 416*cdf0e10cSrcweir aUnitVecX.setX(rScale.getX()); 417*cdf0e10cSrcweir aUnitVecX.setY(0.0); 418*cdf0e10cSrcweir 419*cdf0e10cSrcweir // for Y correction we rotate the UnitVecY back about -rRotate 420*cdf0e10cSrcweir const double fNegRotate(-rRotate); 421*cdf0e10cSrcweir const double fSin(sin(fNegRotate)); 422*cdf0e10cSrcweir const double fCos(cos(fNegRotate)); 423*cdf0e10cSrcweir 424*cdf0e10cSrcweir const double fNewX(aUnitVecY.getX() * fCos - aUnitVecY.getY() * fSin); 425*cdf0e10cSrcweir const double fNewY(aUnitVecY.getX() * fSin + aUnitVecY.getY() * fCos); 426*cdf0e10cSrcweir 427*cdf0e10cSrcweir aUnitVecY.setX(fNewX); 428*cdf0e10cSrcweir aUnitVecY.setY(fNewY); 429*cdf0e10cSrcweir } 430*cdf0e10cSrcweir 431*cdf0e10cSrcweir // Correct aUnitVecY and fCrossXY to fShear=0. Rotation is already removed. 432*cdf0e10cSrcweir // Shear correction can only work with removed rotation 433*cdf0e10cSrcweir aUnitVecY.setX(aUnitVecY.getX() - (aUnitVecY.getY() * rShearX)); 434*cdf0e10cSrcweir fCrossXY = aUnitVecX.cross(aUnitVecY); 435*cdf0e10cSrcweir 436*cdf0e10cSrcweir // calculate unsigned scale value for Y, after the corrections since 437*cdf0e10cSrcweir // the shear correction WILL change the length of aUnitVecY 438*cdf0e10cSrcweir rScale.setY(aUnitVecY.getLength()); 439*cdf0e10cSrcweir 440*cdf0e10cSrcweir // use orientation to set sign of Y-Scale 441*cdf0e10cSrcweir if(fCrossXY < 0.0) 442*cdf0e10cSrcweir { 443*cdf0e10cSrcweir rScale.setY(-rScale.getY()); 444*cdf0e10cSrcweir } 445*cdf0e10cSrcweir } 446*cdf0e10cSrcweir } 447*cdf0e10cSrcweir } 448*cdf0e10cSrcweir 449*cdf0e10cSrcweir return true; 450*cdf0e10cSrcweir } 451*cdf0e10cSrcweir } // end of namespace basegfx 452*cdf0e10cSrcweir 453*cdf0e10cSrcweir /////////////////////////////////////////////////////////////////////////////// 454*cdf0e10cSrcweir // eof 455