1*a06b8d1bSAndrew Rist /**************************************************************
2cdf0e10cSrcweir *
3*a06b8d1bSAndrew Rist * Licensed to the Apache Software Foundation (ASF) under one
4*a06b8d1bSAndrew Rist * or more contributor license agreements. See the NOTICE file
5*a06b8d1bSAndrew Rist * distributed with this work for additional information
6*a06b8d1bSAndrew Rist * regarding copyright ownership. The ASF licenses this file
7*a06b8d1bSAndrew Rist * to you under the Apache License, Version 2.0 (the
8*a06b8d1bSAndrew Rist * "License"); you may not use this file except in compliance
9*a06b8d1bSAndrew Rist * with the License. You may obtain a copy of the License at
10cdf0e10cSrcweir *
11*a06b8d1bSAndrew Rist * http://www.apache.org/licenses/LICENSE-2.0
12cdf0e10cSrcweir *
13*a06b8d1bSAndrew Rist * Unless required by applicable law or agreed to in writing,
14*a06b8d1bSAndrew Rist * software distributed under the License is distributed on an
15*a06b8d1bSAndrew Rist * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
16*a06b8d1bSAndrew Rist * KIND, either express or implied. See the License for the
17*a06b8d1bSAndrew Rist * specific language governing permissions and limitations
18*a06b8d1bSAndrew Rist * under the License.
19cdf0e10cSrcweir *
20*a06b8d1bSAndrew Rist *************************************************************/
21*a06b8d1bSAndrew Rist
22*a06b8d1bSAndrew Rist
23cdf0e10cSrcweir
24cdf0e10cSrcweir #include "bessel.hxx"
25cdf0e10cSrcweir #include "analysishelper.hxx"
26cdf0e10cSrcweir
27cdf0e10cSrcweir #include <rtl/math.hxx>
28cdf0e10cSrcweir
29cdf0e10cSrcweir using ::com::sun::star::lang::IllegalArgumentException;
30cdf0e10cSrcweir using ::com::sun::star::sheet::NoConvergenceException;
31cdf0e10cSrcweir
32cdf0e10cSrcweir namespace sca {
33cdf0e10cSrcweir namespace analysis {
34cdf0e10cSrcweir
35cdf0e10cSrcweir // ============================================================================
36cdf0e10cSrcweir
37cdf0e10cSrcweir const double f_PI = 3.1415926535897932385;
38cdf0e10cSrcweir const double f_2_PI = 2.0 * f_PI;
39cdf0e10cSrcweir const double f_PI_DIV_2 = f_PI / 2.0;
40cdf0e10cSrcweir const double f_PI_DIV_4 = f_PI / 4.0;
41cdf0e10cSrcweir const double f_2_DIV_PI = 2.0 / f_PI;
42cdf0e10cSrcweir
43cdf0e10cSrcweir const double THRESHOLD = 30.0; // Threshold for usage of approximation formula.
44cdf0e10cSrcweir const double MAXEPSILON = 1e-10; // Maximum epsilon for end of iteration.
45cdf0e10cSrcweir const sal_Int32 MAXITER = 100; // Maximum number of iterations.
46cdf0e10cSrcweir
47cdf0e10cSrcweir // ============================================================================
48cdf0e10cSrcweir // BESSEL J
49cdf0e10cSrcweir // ============================================================================
50cdf0e10cSrcweir
51cdf0e10cSrcweir /* The BESSEL function, first kind, unmodified:
52cdf0e10cSrcweir The algorithm follows
53cdf0e10cSrcweir http://www.reference-global.com/isbn/978-3-11-020354-7
54cdf0e10cSrcweir Numerical Mathematics 1 / Numerische Mathematik 1,
55cdf0e10cSrcweir An algorithm-based introduction / Eine algorithmisch orientierte Einfuehrung
56cdf0e10cSrcweir Deuflhard, Peter; Hohmann, Andreas
57cdf0e10cSrcweir Berlin, New York (Walter de Gruyter) 2008
58cdf0e10cSrcweir 4. ueberarb. u. erw. Aufl. 2008
59cdf0e10cSrcweir eBook ISBN: 978-3-11-020355-4
60cdf0e10cSrcweir Chapter 6.3.2 , algorithm 6.24
61cdf0e10cSrcweir The source is in German.
62cdf0e10cSrcweir The BesselJ-function is a special case of the adjoint summation with
63cdf0e10cSrcweir a_k = 2*(k-1)/x for k=1,...
64cdf0e10cSrcweir b_k = -1, for all k, directly substituted
65cdf0e10cSrcweir m_0=1, m_k=2 for k even, and m_k=0 for k odd, calculated on the fly
66cdf0e10cSrcweir alpha_k=1 for k=N and alpha_k=0 otherwise
67cdf0e10cSrcweir */
68cdf0e10cSrcweir
69cdf0e10cSrcweir // ----------------------------------------------------------------------------
70cdf0e10cSrcweir
BesselJ(double x,sal_Int32 N)71cdf0e10cSrcweir double BesselJ( double x, sal_Int32 N ) throw (IllegalArgumentException, NoConvergenceException)
72cdf0e10cSrcweir
73cdf0e10cSrcweir {
74cdf0e10cSrcweir if( N < 0 )
75cdf0e10cSrcweir throw IllegalArgumentException();
76cdf0e10cSrcweir if (x==0.0)
77cdf0e10cSrcweir return (N==0) ? 1.0 : 0.0;
78cdf0e10cSrcweir
79cdf0e10cSrcweir /* The algorithm works only for x>0, therefore remember sign. BesselJ
80cdf0e10cSrcweir with integer order N is an even function for even N (means J(-x)=J(x))
81cdf0e10cSrcweir and an odd function for odd N (means J(-x)=-J(x)).*/
82cdf0e10cSrcweir double fSign = (N % 2 == 1 && x < 0) ? -1.0 : 1.0;
83cdf0e10cSrcweir double fX = fabs(x);
84cdf0e10cSrcweir
85cdf0e10cSrcweir const double fMaxIteration = 9000000.0; //experimental, for to return in < 3 seconds
86cdf0e10cSrcweir double fEstimateIteration = fX * 1.5 + N;
87cdf0e10cSrcweir bool bAsymptoticPossible = pow(fX,0.4) > N;
88cdf0e10cSrcweir if (fEstimateIteration > fMaxIteration)
89cdf0e10cSrcweir {
90cdf0e10cSrcweir if (bAsymptoticPossible)
91cdf0e10cSrcweir return fSign * sqrt(f_2_DIV_PI/fX)* cos(fX-N*f_PI_DIV_2-f_PI_DIV_4);
92cdf0e10cSrcweir else
93cdf0e10cSrcweir throw NoConvergenceException();
94cdf0e10cSrcweir }
95cdf0e10cSrcweir
96cdf0e10cSrcweir double epsilon = 1.0e-15; // relative error
97cdf0e10cSrcweir bool bHasfound = false;
98cdf0e10cSrcweir double k= 0.0;
99cdf0e10cSrcweir // e_{-1} = 0; e_0 = alpha_0 / b_2
100cdf0e10cSrcweir double u ; // u_0 = e_0/f_0 = alpha_0/m_0 = alpha_0
101cdf0e10cSrcweir
102cdf0e10cSrcweir // first used with k=1
103cdf0e10cSrcweir double m_bar; // m_bar_k = m_k * f_bar_{k-1}
104cdf0e10cSrcweir double g_bar; // g_bar_k = m_bar_k - a_{k+1} + g_{k-1}
105cdf0e10cSrcweir double g_bar_delta_u; // g_bar_delta_u_k = f_bar_{k-1} * alpha_k
106cdf0e10cSrcweir // - g_{k-1} * delta_u_{k-1} - m_bar_k * u_{k-1}
107cdf0e10cSrcweir // f_{-1} = 0.0; f_0 = m_0 / b_2 = 1/(-1) = -1
108cdf0e10cSrcweir double g = 0.0; // g_0= f_{-1} / f_0 = 0/(-1) = 0
109cdf0e10cSrcweir double delta_u = 0.0; // dummy initialize, first used with * 0
110cdf0e10cSrcweir double f_bar = -1.0; // f_bar_k = 1/f_k, but only used for k=0
111cdf0e10cSrcweir
112cdf0e10cSrcweir if (N==0)
113cdf0e10cSrcweir {
114cdf0e10cSrcweir //k=0; alpha_0 = 1.0
115cdf0e10cSrcweir u = 1.0; // u_0 = alpha_0
116cdf0e10cSrcweir // k = 1.0; at least one step is necessary
117cdf0e10cSrcweir // m_bar_k = m_k * f_bar_{k-1} ==> m_bar_1 = 0.0
118cdf0e10cSrcweir g_bar_delta_u = 0.0; // alpha_k = 0.0, m_bar = 0.0; g= 0.0
119cdf0e10cSrcweir g_bar = - 2.0/fX; // k = 1.0, g = 0.0
120cdf0e10cSrcweir delta_u = g_bar_delta_u / g_bar;
121cdf0e10cSrcweir u = u + delta_u ; // u_k = u_{k-1} + delta_u_k
122cdf0e10cSrcweir g = -1.0 / g_bar; // g_k=b_{k+2}/g_bar_k
123cdf0e10cSrcweir f_bar = f_bar * g; // f_bar_k = f_bar_{k-1}* g_k
124cdf0e10cSrcweir k = 2.0;
125cdf0e10cSrcweir // From now on all alpha_k = 0.0 and k > N+1
126cdf0e10cSrcweir }
127cdf0e10cSrcweir else
128cdf0e10cSrcweir { // N >= 1 and alpha_k = 0.0 for k<N
129cdf0e10cSrcweir u=0.0; // u_0 = alpha_0
130cdf0e10cSrcweir for (k =1.0; k<= N-1; k = k + 1.0)
131cdf0e10cSrcweir {
132cdf0e10cSrcweir m_bar=2.0 * fmod(k-1.0, 2.0) * f_bar;
133cdf0e10cSrcweir g_bar_delta_u = - g * delta_u - m_bar * u; // alpha_k = 0.0
134cdf0e10cSrcweir g_bar = m_bar - 2.0*k/fX + g;
135cdf0e10cSrcweir delta_u = g_bar_delta_u / g_bar;
136cdf0e10cSrcweir u = u + delta_u;
137cdf0e10cSrcweir g = -1.0/g_bar;
138cdf0e10cSrcweir f_bar=f_bar * g;
139cdf0e10cSrcweir }
140cdf0e10cSrcweir // Step alpha_N = 1.0
141cdf0e10cSrcweir m_bar=2.0 * fmod(k-1.0, 2.0) * f_bar;
142cdf0e10cSrcweir g_bar_delta_u = f_bar - g * delta_u - m_bar * u; // alpha_k = 1.0
143cdf0e10cSrcweir g_bar = m_bar - 2.0*k/fX + g;
144cdf0e10cSrcweir delta_u = g_bar_delta_u / g_bar;
145cdf0e10cSrcweir u = u + delta_u;
146cdf0e10cSrcweir g = -1.0/g_bar;
147cdf0e10cSrcweir f_bar = f_bar * g;
148cdf0e10cSrcweir k = k + 1.0;
149cdf0e10cSrcweir }
150cdf0e10cSrcweir // Loop until desired accuracy, always alpha_k = 0.0
151cdf0e10cSrcweir do
152cdf0e10cSrcweir {
153cdf0e10cSrcweir m_bar = 2.0 * fmod(k-1.0, 2.0) * f_bar;
154cdf0e10cSrcweir g_bar_delta_u = - g * delta_u - m_bar * u;
155cdf0e10cSrcweir g_bar = m_bar - 2.0*k/fX + g;
156cdf0e10cSrcweir delta_u = g_bar_delta_u / g_bar;
157cdf0e10cSrcweir u = u + delta_u;
158cdf0e10cSrcweir g = -1.0/g_bar;
159cdf0e10cSrcweir f_bar = f_bar * g;
160cdf0e10cSrcweir bHasfound = (fabs(delta_u)<=fabs(u)*epsilon);
161cdf0e10cSrcweir k = k + 1.0;
162cdf0e10cSrcweir }
163cdf0e10cSrcweir while (!bHasfound && k <= fMaxIteration);
164cdf0e10cSrcweir if (bHasfound)
165cdf0e10cSrcweir return u * fSign;
166cdf0e10cSrcweir else
167cdf0e10cSrcweir throw NoConvergenceException(); // unlikely to happen
168cdf0e10cSrcweir }
169cdf0e10cSrcweir
170cdf0e10cSrcweir // ============================================================================
171cdf0e10cSrcweir // BESSEL I
172cdf0e10cSrcweir // ============================================================================
173cdf0e10cSrcweir
174cdf0e10cSrcweir /* The BESSEL function, first kind, modified:
175cdf0e10cSrcweir
176cdf0e10cSrcweir inf (x/2)^(n+2k)
177cdf0e10cSrcweir I_n(x) = SUM TERM(n,k) with TERM(n,k) := --------------
178cdf0e10cSrcweir k=0 k! (n+k)!
179cdf0e10cSrcweir
180cdf0e10cSrcweir No asymptotic approximation used, see issue 43040.
181cdf0e10cSrcweir */
182cdf0e10cSrcweir
183cdf0e10cSrcweir // ----------------------------------------------------------------------------
184cdf0e10cSrcweir
BesselI(double x,sal_Int32 n)185cdf0e10cSrcweir double BesselI( double x, sal_Int32 n ) throw( IllegalArgumentException, NoConvergenceException )
186cdf0e10cSrcweir {
187cdf0e10cSrcweir const double fEpsilon = 1.0E-15;
188cdf0e10cSrcweir const sal_Int32 nMaxIteration = 2000;
189cdf0e10cSrcweir const double fXHalf = x / 2.0;
190cdf0e10cSrcweir if( n < 0 )
191cdf0e10cSrcweir throw IllegalArgumentException();
192cdf0e10cSrcweir
193cdf0e10cSrcweir double fResult = 0.0;
194cdf0e10cSrcweir
195cdf0e10cSrcweir /* Start the iteration without TERM(n,0), which is set here.
196cdf0e10cSrcweir
197cdf0e10cSrcweir TERM(n,0) = (x/2)^n / n!
198cdf0e10cSrcweir */
199cdf0e10cSrcweir sal_Int32 nK = 0;
200cdf0e10cSrcweir double fTerm = 1.0;
201cdf0e10cSrcweir // avoid overflow in Fak(n)
202cdf0e10cSrcweir for( nK = 1; nK <= n; ++nK )
203cdf0e10cSrcweir {
204cdf0e10cSrcweir fTerm = fTerm / static_cast< double >( nK ) * fXHalf;
205cdf0e10cSrcweir }
206cdf0e10cSrcweir fResult = fTerm; // Start result with TERM(n,0).
207cdf0e10cSrcweir if( fTerm != 0.0 )
208cdf0e10cSrcweir {
209cdf0e10cSrcweir nK = 1;
210cdf0e10cSrcweir do
211cdf0e10cSrcweir {
212cdf0e10cSrcweir /* Calculation of TERM(n,k) from TERM(n,k-1):
213cdf0e10cSrcweir
214cdf0e10cSrcweir (x/2)^(n+2k)
215cdf0e10cSrcweir TERM(n,k) = --------------
216cdf0e10cSrcweir k! (n+k)!
217cdf0e10cSrcweir
218cdf0e10cSrcweir (x/2)^2 (x/2)^(n+2(k-1))
219cdf0e10cSrcweir = --------------------------
220cdf0e10cSrcweir k (k-1)! (n+k) (n+k-1)!
221cdf0e10cSrcweir
222cdf0e10cSrcweir (x/2)^2 (x/2)^(n+2(k-1))
223cdf0e10cSrcweir = --------- * ------------------
224cdf0e10cSrcweir k(n+k) (k-1)! (n+k-1)!
225cdf0e10cSrcweir
226cdf0e10cSrcweir x^2/4
227cdf0e10cSrcweir = -------- TERM(n,k-1)
228cdf0e10cSrcweir k(n+k)
229cdf0e10cSrcweir */
230cdf0e10cSrcweir fTerm = fTerm * fXHalf / static_cast<double>(nK) * fXHalf / static_cast<double>(nK+n);
231cdf0e10cSrcweir fResult += fTerm;
232cdf0e10cSrcweir nK++;
233cdf0e10cSrcweir }
234cdf0e10cSrcweir while( (fabs( fTerm ) > fabs(fResult) * fEpsilon) && (nK < nMaxIteration) );
235cdf0e10cSrcweir
236cdf0e10cSrcweir }
237cdf0e10cSrcweir return fResult;
238cdf0e10cSrcweir }
239cdf0e10cSrcweir
240cdf0e10cSrcweir
241cdf0e10cSrcweir // ============================================================================
242cdf0e10cSrcweir
Besselk0(double fNum)243cdf0e10cSrcweir double Besselk0( double fNum ) throw( IllegalArgumentException, NoConvergenceException )
244cdf0e10cSrcweir {
245cdf0e10cSrcweir double fRet;
246cdf0e10cSrcweir
247cdf0e10cSrcweir if( fNum <= 2.0 )
248cdf0e10cSrcweir {
249cdf0e10cSrcweir double fNum2 = fNum * 0.5;
250cdf0e10cSrcweir double y = fNum2 * fNum2;
251cdf0e10cSrcweir
252cdf0e10cSrcweir fRet = -log( fNum2 ) * BesselI( fNum, 0 ) +
253cdf0e10cSrcweir ( -0.57721566 + y * ( 0.42278420 + y * ( 0.23069756 + y * ( 0.3488590e-1 +
254cdf0e10cSrcweir y * ( 0.262698e-2 + y * ( 0.10750e-3 + y * 0.74e-5 ) ) ) ) ) );
255cdf0e10cSrcweir }
256cdf0e10cSrcweir else
257cdf0e10cSrcweir {
258cdf0e10cSrcweir double y = 2.0 / fNum;
259cdf0e10cSrcweir
260cdf0e10cSrcweir fRet = exp( -fNum ) / sqrt( fNum ) * ( 1.25331414 + y * ( -0.7832358e-1 +
261cdf0e10cSrcweir y * ( 0.2189568e-1 + y * ( -0.1062446e-1 + y * ( 0.587872e-2 +
262cdf0e10cSrcweir y * ( -0.251540e-2 + y * 0.53208e-3 ) ) ) ) ) );
263cdf0e10cSrcweir }
264cdf0e10cSrcweir
265cdf0e10cSrcweir return fRet;
266cdf0e10cSrcweir }
267cdf0e10cSrcweir
268cdf0e10cSrcweir
Besselk1(double fNum)269cdf0e10cSrcweir double Besselk1( double fNum ) throw( IllegalArgumentException, NoConvergenceException )
270cdf0e10cSrcweir {
271cdf0e10cSrcweir double fRet;
272cdf0e10cSrcweir
273cdf0e10cSrcweir if( fNum <= 2.0 )
274cdf0e10cSrcweir {
275cdf0e10cSrcweir double fNum2 = fNum * 0.5;
276cdf0e10cSrcweir double y = fNum2 * fNum2;
277cdf0e10cSrcweir
278cdf0e10cSrcweir fRet = log( fNum2 ) * BesselI( fNum, 1 ) +
279cdf0e10cSrcweir ( 1.0 + y * ( 0.15443144 + y * ( -0.67278579 + y * ( -0.18156897 + y * ( -0.1919402e-1 +
280cdf0e10cSrcweir y * ( -0.110404e-2 + y * ( -0.4686e-4 ) ) ) ) ) ) )
281cdf0e10cSrcweir / fNum;
282cdf0e10cSrcweir }
283cdf0e10cSrcweir else
284cdf0e10cSrcweir {
285cdf0e10cSrcweir double y = 2.0 / fNum;
286cdf0e10cSrcweir
287cdf0e10cSrcweir fRet = exp( -fNum ) / sqrt( fNum ) * ( 1.25331414 + y * ( 0.23498619 +
288cdf0e10cSrcweir y * ( -0.3655620e-1 + y * ( 0.1504268e-1 + y * ( -0.780353e-2 +
289cdf0e10cSrcweir y * ( 0.325614e-2 + y * ( -0.68245e-3 ) ) ) ) ) ) );
290cdf0e10cSrcweir }
291cdf0e10cSrcweir
292cdf0e10cSrcweir return fRet;
293cdf0e10cSrcweir }
294cdf0e10cSrcweir
295cdf0e10cSrcweir
BesselK(double fNum,sal_Int32 nOrder)296cdf0e10cSrcweir double BesselK( double fNum, sal_Int32 nOrder ) throw( IllegalArgumentException, NoConvergenceException )
297cdf0e10cSrcweir {
298cdf0e10cSrcweir switch( nOrder )
299cdf0e10cSrcweir {
300cdf0e10cSrcweir case 0: return Besselk0( fNum );
301cdf0e10cSrcweir case 1: return Besselk1( fNum );
302cdf0e10cSrcweir default:
303cdf0e10cSrcweir {
304cdf0e10cSrcweir double fBkp;
305cdf0e10cSrcweir
306cdf0e10cSrcweir double fTox = 2.0 / fNum;
307cdf0e10cSrcweir double fBkm = Besselk0( fNum );
308cdf0e10cSrcweir double fBk = Besselk1( fNum );
309cdf0e10cSrcweir
310cdf0e10cSrcweir for( sal_Int32 n = 1 ; n < nOrder ; n++ )
311cdf0e10cSrcweir {
312cdf0e10cSrcweir fBkp = fBkm + double( n ) * fTox * fBk;
313cdf0e10cSrcweir fBkm = fBk;
314cdf0e10cSrcweir fBk = fBkp;
315cdf0e10cSrcweir }
316cdf0e10cSrcweir
317cdf0e10cSrcweir return fBk;
318cdf0e10cSrcweir }
319cdf0e10cSrcweir }
320cdf0e10cSrcweir }
321cdf0e10cSrcweir
322cdf0e10cSrcweir // ============================================================================
323cdf0e10cSrcweir // BESSEL Y
324cdf0e10cSrcweir // ============================================================================
325cdf0e10cSrcweir
326cdf0e10cSrcweir /* The BESSEL function, second kind, unmodified:
327cdf0e10cSrcweir The algorithm for order 0 and for order 1 follows
328cdf0e10cSrcweir http://www.reference-global.com/isbn/978-3-11-020354-7
329cdf0e10cSrcweir Numerical Mathematics 1 / Numerische Mathematik 1,
330cdf0e10cSrcweir An algorithm-based introduction / Eine algorithmisch orientierte Einfuehrung
331cdf0e10cSrcweir Deuflhard, Peter; Hohmann, Andreas
332cdf0e10cSrcweir Berlin, New York (Walter de Gruyter) 2008
333cdf0e10cSrcweir 4. ueberarb. u. erw. Aufl. 2008
334cdf0e10cSrcweir eBook ISBN: 978-3-11-020355-4
335cdf0e10cSrcweir Chapter 6.3.2 , algorithm 6.24
336cdf0e10cSrcweir The source is in German.
337cdf0e10cSrcweir See #i31656# for a commented version of the implementation, attachment #desc6
338cdf0e10cSrcweir http://www.openoffice.org/nonav/issues/showattachment.cgi/63609/Comments%20to%20the%20implementation%20of%20the%20Bessel%20functions.odt
339cdf0e10cSrcweir */
340cdf0e10cSrcweir
Bessely0(double fX)341cdf0e10cSrcweir double Bessely0( double fX ) throw( IllegalArgumentException, NoConvergenceException )
342cdf0e10cSrcweir {
343cdf0e10cSrcweir if (fX <= 0)
344cdf0e10cSrcweir throw IllegalArgumentException();
345cdf0e10cSrcweir const double fMaxIteration = 9000000.0; // should not be reached
346cdf0e10cSrcweir if (fX > 5.0e+6) // iteration is not considerable better then approximation
347cdf0e10cSrcweir return sqrt(1/f_PI/fX)
348cdf0e10cSrcweir *(rtl::math::sin(fX)-rtl::math::cos(fX));
349cdf0e10cSrcweir const double epsilon = 1.0e-15;
350cdf0e10cSrcweir const double EulerGamma = 0.57721566490153286060;
351cdf0e10cSrcweir double alpha = log(fX/2.0)+EulerGamma;
352cdf0e10cSrcweir double u = alpha;
353cdf0e10cSrcweir
354cdf0e10cSrcweir double k = 1.0;
355cdf0e10cSrcweir double m_bar = 0.0;
356cdf0e10cSrcweir double g_bar_delta_u = 0.0;
357cdf0e10cSrcweir double g_bar = -2.0 / fX;
358cdf0e10cSrcweir double delta_u = g_bar_delta_u / g_bar;
359cdf0e10cSrcweir double g = -1.0/g_bar;
360cdf0e10cSrcweir double f_bar = -1 * g;
361cdf0e10cSrcweir
362cdf0e10cSrcweir double sign_alpha = 1.0;
363cdf0e10cSrcweir double km1mod2;
364cdf0e10cSrcweir bool bHasFound = false;
365cdf0e10cSrcweir k = k + 1;
366cdf0e10cSrcweir do
367cdf0e10cSrcweir {
368cdf0e10cSrcweir km1mod2 = fmod(k-1.0,2.0);
369cdf0e10cSrcweir m_bar=(2.0*km1mod2) * f_bar;
370cdf0e10cSrcweir if (km1mod2 == 0.0)
371cdf0e10cSrcweir alpha = 0.0;
372cdf0e10cSrcweir else
373cdf0e10cSrcweir {
374cdf0e10cSrcweir alpha = sign_alpha * (4.0/k);
375cdf0e10cSrcweir sign_alpha = -sign_alpha;
376cdf0e10cSrcweir }
377cdf0e10cSrcweir g_bar_delta_u = f_bar * alpha - g * delta_u - m_bar * u;
378cdf0e10cSrcweir g_bar = m_bar - (2.0*k)/fX + g;
379cdf0e10cSrcweir delta_u = g_bar_delta_u / g_bar;
380cdf0e10cSrcweir u = u+delta_u;
381cdf0e10cSrcweir g = -1.0 / g_bar;
382cdf0e10cSrcweir f_bar = f_bar*g;
383cdf0e10cSrcweir bHasFound = (fabs(delta_u)<=fabs(u)*epsilon);
384cdf0e10cSrcweir k=k+1;
385cdf0e10cSrcweir }
386cdf0e10cSrcweir while (!bHasFound && k<fMaxIteration);
387cdf0e10cSrcweir if (bHasFound)
388cdf0e10cSrcweir return u*f_2_DIV_PI;
389cdf0e10cSrcweir else
390cdf0e10cSrcweir throw NoConvergenceException(); // not likely to happen
391cdf0e10cSrcweir }
392cdf0e10cSrcweir
393cdf0e10cSrcweir // See #i31656# for a commented version of this implementation, attachment #desc6
394cdf0e10cSrcweir // http://www.openoffice.org/nonav/issues/showattachment.cgi/63609/Comments%20to%20the%20implementation%20of%20the%20Bessel%20functions.odt
Bessely1(double fX)395cdf0e10cSrcweir double Bessely1( double fX ) throw( IllegalArgumentException, NoConvergenceException )
396cdf0e10cSrcweir {
397cdf0e10cSrcweir if (fX <= 0)
398cdf0e10cSrcweir throw IllegalArgumentException();
399cdf0e10cSrcweir const double fMaxIteration = 9000000.0; // should not be reached
400cdf0e10cSrcweir if (fX > 5.0e+6) // iteration is not considerable better then approximation
401cdf0e10cSrcweir return - sqrt(1/f_PI/fX)
402cdf0e10cSrcweir *(rtl::math::sin(fX)+rtl::math::cos(fX));
403cdf0e10cSrcweir const double epsilon = 1.0e-15;
404cdf0e10cSrcweir const double EulerGamma = 0.57721566490153286060;
405cdf0e10cSrcweir double alpha = 1.0/fX;
406cdf0e10cSrcweir double f_bar = -1.0;
407cdf0e10cSrcweir double g = 0.0;
408cdf0e10cSrcweir double u = alpha;
409cdf0e10cSrcweir double k = 1.0;
410cdf0e10cSrcweir double m_bar = 0.0;
411cdf0e10cSrcweir alpha = 1.0 - EulerGamma - log(fX/2.0);
412cdf0e10cSrcweir double g_bar_delta_u = -alpha;
413cdf0e10cSrcweir double g_bar = -2.0 / fX;
414cdf0e10cSrcweir double delta_u = g_bar_delta_u / g_bar;
415cdf0e10cSrcweir u = u + delta_u;
416cdf0e10cSrcweir g = -1.0/g_bar;
417cdf0e10cSrcweir f_bar = f_bar * g;
418cdf0e10cSrcweir double sign_alpha = -1.0;
419cdf0e10cSrcweir double km1mod2; //will be (k-1) mod 2
420cdf0e10cSrcweir double q; // will be (k-1) div 2
421cdf0e10cSrcweir bool bHasFound = false;
422cdf0e10cSrcweir k = k + 1.0;
423cdf0e10cSrcweir do
424cdf0e10cSrcweir {
425cdf0e10cSrcweir km1mod2 = fmod(k-1.0,2.0);
426cdf0e10cSrcweir m_bar=(2.0*km1mod2) * f_bar;
427cdf0e10cSrcweir q = (k-1.0)/2.0;
428cdf0e10cSrcweir if (km1mod2 == 0.0) // k is odd
429cdf0e10cSrcweir {
430cdf0e10cSrcweir alpha = sign_alpha * (1.0/q + 1.0/(q+1.0));
431cdf0e10cSrcweir sign_alpha = -sign_alpha;
432cdf0e10cSrcweir }
433cdf0e10cSrcweir else
434cdf0e10cSrcweir alpha = 0.0;
435cdf0e10cSrcweir g_bar_delta_u = f_bar * alpha - g * delta_u - m_bar * u;
436cdf0e10cSrcweir g_bar = m_bar - (2.0*k)/fX + g;
437cdf0e10cSrcweir delta_u = g_bar_delta_u / g_bar;
438cdf0e10cSrcweir u = u+delta_u;
439cdf0e10cSrcweir g = -1.0 / g_bar;
440cdf0e10cSrcweir f_bar = f_bar*g;
441cdf0e10cSrcweir bHasFound = (fabs(delta_u)<=fabs(u)*epsilon);
442cdf0e10cSrcweir k=k+1;
443cdf0e10cSrcweir }
444cdf0e10cSrcweir while (!bHasFound && k<fMaxIteration);
445cdf0e10cSrcweir if (bHasFound)
446cdf0e10cSrcweir return -u*2.0/f_PI;
447cdf0e10cSrcweir else
448cdf0e10cSrcweir throw NoConvergenceException();
449cdf0e10cSrcweir }
450cdf0e10cSrcweir
BesselY(double fNum,sal_Int32 nOrder)451cdf0e10cSrcweir double BesselY( double fNum, sal_Int32 nOrder ) throw( IllegalArgumentException, NoConvergenceException )
452cdf0e10cSrcweir {
453cdf0e10cSrcweir switch( nOrder )
454cdf0e10cSrcweir {
455cdf0e10cSrcweir case 0: return Bessely0( fNum );
456cdf0e10cSrcweir case 1: return Bessely1( fNum );
457cdf0e10cSrcweir default:
458cdf0e10cSrcweir {
459cdf0e10cSrcweir double fByp;
460cdf0e10cSrcweir
461cdf0e10cSrcweir double fTox = 2.0 / fNum;
462cdf0e10cSrcweir double fBym = Bessely0( fNum );
463cdf0e10cSrcweir double fBy = Bessely1( fNum );
464cdf0e10cSrcweir
465cdf0e10cSrcweir for( sal_Int32 n = 1 ; n < nOrder ; n++ )
466cdf0e10cSrcweir {
467cdf0e10cSrcweir fByp = double( n ) * fTox * fBy - fBym;
468cdf0e10cSrcweir fBym = fBy;
469cdf0e10cSrcweir fBy = fByp;
470cdf0e10cSrcweir }
471cdf0e10cSrcweir
472cdf0e10cSrcweir return fBy;
473cdf0e10cSrcweir }
474cdf0e10cSrcweir }
475cdf0e10cSrcweir }
476cdf0e10cSrcweir
477cdf0e10cSrcweir // ============================================================================
478cdf0e10cSrcweir
479cdf0e10cSrcweir } // namespace analysis
480cdf0e10cSrcweir } // namespace sca
481cdf0e10cSrcweir
482