xref: /AOO41X/main/scaddins/source/analysis/bessel.cxx (revision a06b8d1bb8b9b0ee563e48b193d11bd9a9198b56)
1*a06b8d1bSAndrew Rist /**************************************************************
2cdf0e10cSrcweir  *
3*a06b8d1bSAndrew Rist  * Licensed to the Apache Software Foundation (ASF) under one
4*a06b8d1bSAndrew Rist  * or more contributor license agreements.  See the NOTICE file
5*a06b8d1bSAndrew Rist  * distributed with this work for additional information
6*a06b8d1bSAndrew Rist  * regarding copyright ownership.  The ASF licenses this file
7*a06b8d1bSAndrew Rist  * to you under the Apache License, Version 2.0 (the
8*a06b8d1bSAndrew Rist  * "License"); you may not use this file except in compliance
9*a06b8d1bSAndrew Rist  * with the License.  You may obtain a copy of the License at
10cdf0e10cSrcweir  *
11*a06b8d1bSAndrew Rist  *   http://www.apache.org/licenses/LICENSE-2.0
12cdf0e10cSrcweir  *
13*a06b8d1bSAndrew Rist  * Unless required by applicable law or agreed to in writing,
14*a06b8d1bSAndrew Rist  * software distributed under the License is distributed on an
15*a06b8d1bSAndrew Rist  * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
16*a06b8d1bSAndrew Rist  * KIND, either express or implied.  See the License for the
17*a06b8d1bSAndrew Rist  * specific language governing permissions and limitations
18*a06b8d1bSAndrew Rist  * under the License.
19cdf0e10cSrcweir  *
20*a06b8d1bSAndrew Rist  *************************************************************/
21*a06b8d1bSAndrew Rist 
22*a06b8d1bSAndrew Rist 
23cdf0e10cSrcweir 
24cdf0e10cSrcweir #include "bessel.hxx"
25cdf0e10cSrcweir #include "analysishelper.hxx"
26cdf0e10cSrcweir 
27cdf0e10cSrcweir #include <rtl/math.hxx>
28cdf0e10cSrcweir 
29cdf0e10cSrcweir using ::com::sun::star::lang::IllegalArgumentException;
30cdf0e10cSrcweir using ::com::sun::star::sheet::NoConvergenceException;
31cdf0e10cSrcweir 
32cdf0e10cSrcweir namespace sca {
33cdf0e10cSrcweir namespace analysis {
34cdf0e10cSrcweir 
35cdf0e10cSrcweir // ============================================================================
36cdf0e10cSrcweir 
37cdf0e10cSrcweir const double f_PI       = 3.1415926535897932385;
38cdf0e10cSrcweir const double f_2_PI     = 2.0 * f_PI;
39cdf0e10cSrcweir const double f_PI_DIV_2 = f_PI / 2.0;
40cdf0e10cSrcweir const double f_PI_DIV_4 = f_PI / 4.0;
41cdf0e10cSrcweir const double f_2_DIV_PI = 2.0 / f_PI;
42cdf0e10cSrcweir 
43cdf0e10cSrcweir const double THRESHOLD  = 30.0;     // Threshold for usage of approximation formula.
44cdf0e10cSrcweir const double MAXEPSILON = 1e-10;    // Maximum epsilon for end of iteration.
45cdf0e10cSrcweir const sal_Int32 MAXITER = 100;      // Maximum number of iterations.
46cdf0e10cSrcweir 
47cdf0e10cSrcweir // ============================================================================
48cdf0e10cSrcweir // BESSEL J
49cdf0e10cSrcweir // ============================================================================
50cdf0e10cSrcweir 
51cdf0e10cSrcweir /*  The BESSEL function, first kind, unmodified:
52cdf0e10cSrcweir     The algorithm follows
53cdf0e10cSrcweir     http://www.reference-global.com/isbn/978-3-11-020354-7
54cdf0e10cSrcweir     Numerical Mathematics 1 / Numerische Mathematik 1,
55cdf0e10cSrcweir     An algorithm-based introduction / Eine algorithmisch orientierte Einfuehrung
56cdf0e10cSrcweir     Deuflhard, Peter; Hohmann, Andreas
57cdf0e10cSrcweir     Berlin, New York (Walter de Gruyter) 2008
58cdf0e10cSrcweir     4. ueberarb. u. erw. Aufl. 2008
59cdf0e10cSrcweir     eBook ISBN: 978-3-11-020355-4
60cdf0e10cSrcweir     Chapter 6.3.2 , algorithm 6.24
61cdf0e10cSrcweir     The source is in German.
62cdf0e10cSrcweir     The BesselJ-function is a special case of the adjoint summation with
63cdf0e10cSrcweir     a_k = 2*(k-1)/x for k=1,...
64cdf0e10cSrcweir     b_k = -1, for all k, directly substituted
65cdf0e10cSrcweir     m_0=1, m_k=2 for k even, and m_k=0 for k odd, calculated on the fly
66cdf0e10cSrcweir     alpha_k=1 for k=N and alpha_k=0 otherwise
67cdf0e10cSrcweir */
68cdf0e10cSrcweir 
69cdf0e10cSrcweir // ----------------------------------------------------------------------------
70cdf0e10cSrcweir 
BesselJ(double x,sal_Int32 N)71cdf0e10cSrcweir double BesselJ( double x, sal_Int32 N ) throw (IllegalArgumentException, NoConvergenceException)
72cdf0e10cSrcweir 
73cdf0e10cSrcweir {
74cdf0e10cSrcweir     if( N < 0 )
75cdf0e10cSrcweir         throw IllegalArgumentException();
76cdf0e10cSrcweir     if (x==0.0)
77cdf0e10cSrcweir         return (N==0) ? 1.0 : 0.0;
78cdf0e10cSrcweir 
79cdf0e10cSrcweir     /*  The algorithm works only for x>0, therefore remember sign. BesselJ
80cdf0e10cSrcweir         with integer order N is an even function for even N (means J(-x)=J(x))
81cdf0e10cSrcweir         and an odd function for odd N (means J(-x)=-J(x)).*/
82cdf0e10cSrcweir     double fSign = (N % 2 == 1 && x < 0) ? -1.0 : 1.0;
83cdf0e10cSrcweir     double fX = fabs(x);
84cdf0e10cSrcweir 
85cdf0e10cSrcweir     const double fMaxIteration = 9000000.0; //experimental, for to return in < 3 seconds
86cdf0e10cSrcweir     double fEstimateIteration = fX * 1.5 + N;
87cdf0e10cSrcweir     bool bAsymptoticPossible = pow(fX,0.4) > N;
88cdf0e10cSrcweir     if (fEstimateIteration > fMaxIteration)
89cdf0e10cSrcweir     {
90cdf0e10cSrcweir         if (bAsymptoticPossible)
91cdf0e10cSrcweir             return fSign * sqrt(f_2_DIV_PI/fX)* cos(fX-N*f_PI_DIV_2-f_PI_DIV_4);
92cdf0e10cSrcweir         else
93cdf0e10cSrcweir             throw NoConvergenceException();
94cdf0e10cSrcweir     }
95cdf0e10cSrcweir 
96cdf0e10cSrcweir     double epsilon = 1.0e-15; // relative error
97cdf0e10cSrcweir     bool bHasfound = false;
98cdf0e10cSrcweir     double k= 0.0;
99cdf0e10cSrcweir     // e_{-1} = 0; e_0 = alpha_0 / b_2
100cdf0e10cSrcweir     double  u ; // u_0 = e_0/f_0 = alpha_0/m_0 = alpha_0
101cdf0e10cSrcweir 
102cdf0e10cSrcweir     // first used with k=1
103cdf0e10cSrcweir     double m_bar;         // m_bar_k = m_k * f_bar_{k-1}
104cdf0e10cSrcweir     double g_bar;         // g_bar_k = m_bar_k - a_{k+1} + g_{k-1}
105cdf0e10cSrcweir     double g_bar_delta_u; // g_bar_delta_u_k = f_bar_{k-1} * alpha_k
106cdf0e10cSrcweir                           // - g_{k-1} * delta_u_{k-1} - m_bar_k * u_{k-1}
107cdf0e10cSrcweir     // f_{-1} = 0.0; f_0 = m_0 / b_2 = 1/(-1) = -1
108cdf0e10cSrcweir     double g = 0.0;       // g_0= f_{-1} / f_0 = 0/(-1) = 0
109cdf0e10cSrcweir     double delta_u = 0.0; // dummy initialize, first used with * 0
110cdf0e10cSrcweir     double f_bar = -1.0;  // f_bar_k = 1/f_k, but only used for k=0
111cdf0e10cSrcweir 
112cdf0e10cSrcweir     if (N==0)
113cdf0e10cSrcweir     {
114cdf0e10cSrcweir         //k=0; alpha_0 = 1.0
115cdf0e10cSrcweir         u = 1.0; // u_0 = alpha_0
116cdf0e10cSrcweir         // k = 1.0; at least one step is necessary
117cdf0e10cSrcweir         // m_bar_k = m_k * f_bar_{k-1} ==> m_bar_1 = 0.0
118cdf0e10cSrcweir         g_bar_delta_u = 0.0;    // alpha_k = 0.0, m_bar = 0.0; g= 0.0
119cdf0e10cSrcweir         g_bar = - 2.0/fX;       // k = 1.0, g = 0.0
120cdf0e10cSrcweir         delta_u = g_bar_delta_u / g_bar;
121cdf0e10cSrcweir         u = u + delta_u ;       // u_k = u_{k-1} + delta_u_k
122cdf0e10cSrcweir         g = -1.0 / g_bar;       // g_k=b_{k+2}/g_bar_k
123cdf0e10cSrcweir         f_bar = f_bar * g;      // f_bar_k = f_bar_{k-1}* g_k
124cdf0e10cSrcweir         k = 2.0;
125cdf0e10cSrcweir         // From now on all alpha_k = 0.0 and k > N+1
126cdf0e10cSrcweir     }
127cdf0e10cSrcweir     else
128cdf0e10cSrcweir     {   // N >= 1 and alpha_k = 0.0 for k<N
129cdf0e10cSrcweir         u=0.0; // u_0 = alpha_0
130cdf0e10cSrcweir         for (k =1.0; k<= N-1; k = k + 1.0)
131cdf0e10cSrcweir         {
132cdf0e10cSrcweir             m_bar=2.0 * fmod(k-1.0, 2.0) * f_bar;
133cdf0e10cSrcweir             g_bar_delta_u = - g * delta_u - m_bar * u; // alpha_k = 0.0
134cdf0e10cSrcweir             g_bar = m_bar - 2.0*k/fX + g;
135cdf0e10cSrcweir             delta_u = g_bar_delta_u / g_bar;
136cdf0e10cSrcweir             u = u + delta_u;
137cdf0e10cSrcweir             g = -1.0/g_bar;
138cdf0e10cSrcweir             f_bar=f_bar * g;
139cdf0e10cSrcweir         }
140cdf0e10cSrcweir         // Step alpha_N = 1.0
141cdf0e10cSrcweir         m_bar=2.0 * fmod(k-1.0, 2.0) * f_bar;
142cdf0e10cSrcweir         g_bar_delta_u = f_bar - g * delta_u - m_bar * u; // alpha_k = 1.0
143cdf0e10cSrcweir         g_bar = m_bar - 2.0*k/fX + g;
144cdf0e10cSrcweir         delta_u = g_bar_delta_u / g_bar;
145cdf0e10cSrcweir         u = u + delta_u;
146cdf0e10cSrcweir         g = -1.0/g_bar;
147cdf0e10cSrcweir         f_bar = f_bar * g;
148cdf0e10cSrcweir         k = k + 1.0;
149cdf0e10cSrcweir     }
150cdf0e10cSrcweir     // Loop until desired accuracy, always alpha_k = 0.0
151cdf0e10cSrcweir     do
152cdf0e10cSrcweir     {
153cdf0e10cSrcweir         m_bar = 2.0 * fmod(k-1.0, 2.0) * f_bar;
154cdf0e10cSrcweir         g_bar_delta_u = - g * delta_u - m_bar * u;
155cdf0e10cSrcweir         g_bar = m_bar - 2.0*k/fX + g;
156cdf0e10cSrcweir         delta_u = g_bar_delta_u / g_bar;
157cdf0e10cSrcweir         u = u + delta_u;
158cdf0e10cSrcweir         g = -1.0/g_bar;
159cdf0e10cSrcweir         f_bar = f_bar * g;
160cdf0e10cSrcweir         bHasfound = (fabs(delta_u)<=fabs(u)*epsilon);
161cdf0e10cSrcweir         k = k + 1.0;
162cdf0e10cSrcweir     }
163cdf0e10cSrcweir     while (!bHasfound && k <= fMaxIteration);
164cdf0e10cSrcweir     if (bHasfound)
165cdf0e10cSrcweir         return u * fSign;
166cdf0e10cSrcweir     else
167cdf0e10cSrcweir         throw NoConvergenceException(); // unlikely to happen
168cdf0e10cSrcweir }
169cdf0e10cSrcweir 
170cdf0e10cSrcweir // ============================================================================
171cdf0e10cSrcweir // BESSEL I
172cdf0e10cSrcweir // ============================================================================
173cdf0e10cSrcweir 
174cdf0e10cSrcweir /*  The BESSEL function, first kind, modified:
175cdf0e10cSrcweir 
176cdf0e10cSrcweir                      inf                                  (x/2)^(n+2k)
177cdf0e10cSrcweir         I_n(x)  =  SUM   TERM(n,k)   with   TERM(n,k) := --------------
178cdf0e10cSrcweir                      k=0                                   k! (n+k)!
179cdf0e10cSrcweir 
180cdf0e10cSrcweir     No asymptotic approximation used, see issue 43040.
181cdf0e10cSrcweir  */
182cdf0e10cSrcweir 
183cdf0e10cSrcweir // ----------------------------------------------------------------------------
184cdf0e10cSrcweir 
BesselI(double x,sal_Int32 n)185cdf0e10cSrcweir double BesselI( double x, sal_Int32 n ) throw( IllegalArgumentException, NoConvergenceException )
186cdf0e10cSrcweir {
187cdf0e10cSrcweir     const double fEpsilon = 1.0E-15;
188cdf0e10cSrcweir     const sal_Int32 nMaxIteration = 2000;
189cdf0e10cSrcweir     const double fXHalf = x / 2.0;
190cdf0e10cSrcweir     if( n < 0 )
191cdf0e10cSrcweir         throw IllegalArgumentException();
192cdf0e10cSrcweir 
193cdf0e10cSrcweir     double fResult = 0.0;
194cdf0e10cSrcweir 
195cdf0e10cSrcweir     /*  Start the iteration without TERM(n,0), which is set here.
196cdf0e10cSrcweir 
197cdf0e10cSrcweir             TERM(n,0) = (x/2)^n / n!
198cdf0e10cSrcweir      */
199cdf0e10cSrcweir     sal_Int32 nK = 0;
200cdf0e10cSrcweir     double fTerm = 1.0;
201cdf0e10cSrcweir     // avoid overflow in Fak(n)
202cdf0e10cSrcweir     for( nK = 1; nK <= n; ++nK )
203cdf0e10cSrcweir     {
204cdf0e10cSrcweir         fTerm = fTerm / static_cast< double >( nK ) * fXHalf;
205cdf0e10cSrcweir     }
206cdf0e10cSrcweir     fResult = fTerm;    // Start result with TERM(n,0).
207cdf0e10cSrcweir     if( fTerm != 0.0 )
208cdf0e10cSrcweir     {
209cdf0e10cSrcweir         nK = 1;
210cdf0e10cSrcweir         do
211cdf0e10cSrcweir         {
212cdf0e10cSrcweir             /*  Calculation of TERM(n,k) from TERM(n,k-1):
213cdf0e10cSrcweir 
214cdf0e10cSrcweir                                    (x/2)^(n+2k)
215cdf0e10cSrcweir                     TERM(n,k)  =  --------------
216cdf0e10cSrcweir                                     k! (n+k)!
217cdf0e10cSrcweir 
218cdf0e10cSrcweir                                    (x/2)^2 (x/2)^(n+2(k-1))
219cdf0e10cSrcweir                                =  --------------------------
220cdf0e10cSrcweir                                    k (k-1)! (n+k) (n+k-1)!
221cdf0e10cSrcweir 
222cdf0e10cSrcweir                                    (x/2)^2     (x/2)^(n+2(k-1))
223cdf0e10cSrcweir                                =  --------- * ------------------
224cdf0e10cSrcweir                                    k(n+k)      (k-1)! (n+k-1)!
225cdf0e10cSrcweir 
226cdf0e10cSrcweir                                    x^2/4
227cdf0e10cSrcweir                                =  -------- TERM(n,k-1)
228cdf0e10cSrcweir                                    k(n+k)
229cdf0e10cSrcweir             */
230cdf0e10cSrcweir         fTerm = fTerm * fXHalf / static_cast<double>(nK) * fXHalf / static_cast<double>(nK+n);
231cdf0e10cSrcweir         fResult += fTerm;
232cdf0e10cSrcweir         nK++;
233cdf0e10cSrcweir         }
234cdf0e10cSrcweir         while( (fabs( fTerm ) > fabs(fResult) * fEpsilon) && (nK < nMaxIteration) );
235cdf0e10cSrcweir 
236cdf0e10cSrcweir     }
237cdf0e10cSrcweir     return fResult;
238cdf0e10cSrcweir }
239cdf0e10cSrcweir 
240cdf0e10cSrcweir 
241cdf0e10cSrcweir // ============================================================================
242cdf0e10cSrcweir 
Besselk0(double fNum)243cdf0e10cSrcweir double Besselk0( double fNum ) throw( IllegalArgumentException, NoConvergenceException )
244cdf0e10cSrcweir {
245cdf0e10cSrcweir 	double	fRet;
246cdf0e10cSrcweir 
247cdf0e10cSrcweir 	if( fNum <= 2.0 )
248cdf0e10cSrcweir 	{
249cdf0e10cSrcweir 		double	fNum2 = fNum * 0.5;
250cdf0e10cSrcweir 		double	y = fNum2 * fNum2;
251cdf0e10cSrcweir 
252cdf0e10cSrcweir         fRet = -log( fNum2 ) * BesselI( fNum, 0 ) +
253cdf0e10cSrcweir 				( -0.57721566 + y * ( 0.42278420 + y * ( 0.23069756 + y * ( 0.3488590e-1 +
254cdf0e10cSrcweir 					y * ( 0.262698e-2 + y * ( 0.10750e-3 + y * 0.74e-5 ) ) ) ) ) );
255cdf0e10cSrcweir 	}
256cdf0e10cSrcweir 	else
257cdf0e10cSrcweir 	{
258cdf0e10cSrcweir 		double	y = 2.0 / fNum;
259cdf0e10cSrcweir 
260cdf0e10cSrcweir 		fRet = exp( -fNum ) / sqrt( fNum ) * ( 1.25331414 + y * ( -0.7832358e-1 +
261cdf0e10cSrcweir 				y * ( 0.2189568e-1 + y * ( -0.1062446e-1 + y * ( 0.587872e-2 +
262cdf0e10cSrcweir 				y * ( -0.251540e-2 + y * 0.53208e-3 ) ) ) ) ) );
263cdf0e10cSrcweir 	}
264cdf0e10cSrcweir 
265cdf0e10cSrcweir 	return fRet;
266cdf0e10cSrcweir }
267cdf0e10cSrcweir 
268cdf0e10cSrcweir 
Besselk1(double fNum)269cdf0e10cSrcweir double Besselk1( double fNum ) throw( IllegalArgumentException, NoConvergenceException )
270cdf0e10cSrcweir {
271cdf0e10cSrcweir 	double	fRet;
272cdf0e10cSrcweir 
273cdf0e10cSrcweir 	if( fNum <= 2.0 )
274cdf0e10cSrcweir 	{
275cdf0e10cSrcweir 		double	fNum2 = fNum * 0.5;
276cdf0e10cSrcweir 		double	y = fNum2 * fNum2;
277cdf0e10cSrcweir 
278cdf0e10cSrcweir         fRet = log( fNum2 ) * BesselI( fNum, 1 ) +
279cdf0e10cSrcweir 				( 1.0 + y * ( 0.15443144 + y * ( -0.67278579 + y * ( -0.18156897 + y * ( -0.1919402e-1 +
280cdf0e10cSrcweir 					y * ( -0.110404e-2 + y * ( -0.4686e-4 ) ) ) ) ) ) )
281cdf0e10cSrcweir 				/ fNum;
282cdf0e10cSrcweir 	}
283cdf0e10cSrcweir 	else
284cdf0e10cSrcweir 	{
285cdf0e10cSrcweir 		double	y = 2.0 / fNum;
286cdf0e10cSrcweir 
287cdf0e10cSrcweir 		fRet = exp( -fNum ) / sqrt( fNum ) * ( 1.25331414 + y * ( 0.23498619 +
288cdf0e10cSrcweir 				y * ( -0.3655620e-1 + y * ( 0.1504268e-1 + y * ( -0.780353e-2 +
289cdf0e10cSrcweir 				y * ( 0.325614e-2 + y * ( -0.68245e-3 ) ) ) ) ) ) );
290cdf0e10cSrcweir 	}
291cdf0e10cSrcweir 
292cdf0e10cSrcweir 	return fRet;
293cdf0e10cSrcweir }
294cdf0e10cSrcweir 
295cdf0e10cSrcweir 
BesselK(double fNum,sal_Int32 nOrder)296cdf0e10cSrcweir double BesselK( double fNum, sal_Int32 nOrder ) throw( IllegalArgumentException, NoConvergenceException )
297cdf0e10cSrcweir {
298cdf0e10cSrcweir 	switch( nOrder )
299cdf0e10cSrcweir 	{
300cdf0e10cSrcweir 		case 0:		return Besselk0( fNum );
301cdf0e10cSrcweir 		case 1:		return Besselk1( fNum );
302cdf0e10cSrcweir 		default:
303cdf0e10cSrcweir 		{
304cdf0e10cSrcweir 			double		fBkp;
305cdf0e10cSrcweir 
306cdf0e10cSrcweir 			double		fTox = 2.0 / fNum;
307cdf0e10cSrcweir 			double		fBkm = Besselk0( fNum );
308cdf0e10cSrcweir 			double		fBk = Besselk1( fNum );
309cdf0e10cSrcweir 
310cdf0e10cSrcweir 			for( sal_Int32 n = 1 ; n < nOrder ; n++ )
311cdf0e10cSrcweir 			{
312cdf0e10cSrcweir 				fBkp = fBkm + double( n ) * fTox * fBk;
313cdf0e10cSrcweir 				fBkm = fBk;
314cdf0e10cSrcweir 				fBk = fBkp;
315cdf0e10cSrcweir 			}
316cdf0e10cSrcweir 
317cdf0e10cSrcweir 			return fBk;
318cdf0e10cSrcweir 		}
319cdf0e10cSrcweir 	}
320cdf0e10cSrcweir }
321cdf0e10cSrcweir 
322cdf0e10cSrcweir // ============================================================================
323cdf0e10cSrcweir // BESSEL Y
324cdf0e10cSrcweir // ============================================================================
325cdf0e10cSrcweir 
326cdf0e10cSrcweir /*  The BESSEL function, second kind, unmodified:
327cdf0e10cSrcweir     The algorithm for order 0 and for order 1 follows
328cdf0e10cSrcweir     http://www.reference-global.com/isbn/978-3-11-020354-7
329cdf0e10cSrcweir     Numerical Mathematics 1 / Numerische Mathematik 1,
330cdf0e10cSrcweir     An algorithm-based introduction / Eine algorithmisch orientierte Einfuehrung
331cdf0e10cSrcweir     Deuflhard, Peter; Hohmann, Andreas
332cdf0e10cSrcweir     Berlin, New York (Walter de Gruyter) 2008
333cdf0e10cSrcweir     4. ueberarb. u. erw. Aufl. 2008
334cdf0e10cSrcweir     eBook ISBN: 978-3-11-020355-4
335cdf0e10cSrcweir     Chapter 6.3.2 , algorithm 6.24
336cdf0e10cSrcweir     The source is in German.
337cdf0e10cSrcweir     See #i31656# for a commented version of the implementation, attachment #desc6
338cdf0e10cSrcweir     http://www.openoffice.org/nonav/issues/showattachment.cgi/63609/Comments%20to%20the%20implementation%20of%20the%20Bessel%20functions.odt
339cdf0e10cSrcweir */
340cdf0e10cSrcweir 
Bessely0(double fX)341cdf0e10cSrcweir double Bessely0( double fX ) throw( IllegalArgumentException, NoConvergenceException )
342cdf0e10cSrcweir {
343cdf0e10cSrcweir     if (fX <= 0)
344cdf0e10cSrcweir         throw IllegalArgumentException();
345cdf0e10cSrcweir     const double fMaxIteration = 9000000.0; // should not be reached
346cdf0e10cSrcweir     if (fX > 5.0e+6) // iteration is not considerable better then approximation
347cdf0e10cSrcweir         return sqrt(1/f_PI/fX)
348cdf0e10cSrcweir                 *(rtl::math::sin(fX)-rtl::math::cos(fX));
349cdf0e10cSrcweir     const double epsilon = 1.0e-15;
350cdf0e10cSrcweir     const double EulerGamma = 0.57721566490153286060;
351cdf0e10cSrcweir     double alpha = log(fX/2.0)+EulerGamma;
352cdf0e10cSrcweir     double u = alpha;
353cdf0e10cSrcweir 
354cdf0e10cSrcweir     double k = 1.0;
355cdf0e10cSrcweir     double m_bar = 0.0;
356cdf0e10cSrcweir     double g_bar_delta_u = 0.0;
357cdf0e10cSrcweir     double g_bar = -2.0 / fX;
358cdf0e10cSrcweir     double delta_u = g_bar_delta_u / g_bar;
359cdf0e10cSrcweir     double g = -1.0/g_bar;
360cdf0e10cSrcweir     double f_bar = -1 * g;
361cdf0e10cSrcweir 
362cdf0e10cSrcweir     double sign_alpha = 1.0;
363cdf0e10cSrcweir     double km1mod2;
364cdf0e10cSrcweir     bool bHasFound = false;
365cdf0e10cSrcweir     k = k + 1;
366cdf0e10cSrcweir     do
367cdf0e10cSrcweir     {
368cdf0e10cSrcweir         km1mod2 = fmod(k-1.0,2.0);
369cdf0e10cSrcweir         m_bar=(2.0*km1mod2) * f_bar;
370cdf0e10cSrcweir         if (km1mod2 == 0.0)
371cdf0e10cSrcweir             alpha = 0.0;
372cdf0e10cSrcweir         else
373cdf0e10cSrcweir         {
374cdf0e10cSrcweir            alpha = sign_alpha * (4.0/k);
375cdf0e10cSrcweir            sign_alpha = -sign_alpha;
376cdf0e10cSrcweir         }
377cdf0e10cSrcweir         g_bar_delta_u = f_bar * alpha - g * delta_u - m_bar * u;
378cdf0e10cSrcweir         g_bar = m_bar - (2.0*k)/fX + g;
379cdf0e10cSrcweir         delta_u = g_bar_delta_u / g_bar;
380cdf0e10cSrcweir         u = u+delta_u;
381cdf0e10cSrcweir         g = -1.0 / g_bar;
382cdf0e10cSrcweir         f_bar = f_bar*g;
383cdf0e10cSrcweir         bHasFound = (fabs(delta_u)<=fabs(u)*epsilon);
384cdf0e10cSrcweir         k=k+1;
385cdf0e10cSrcweir     }
386cdf0e10cSrcweir     while (!bHasFound && k<fMaxIteration);
387cdf0e10cSrcweir     if (bHasFound)
388cdf0e10cSrcweir         return u*f_2_DIV_PI;
389cdf0e10cSrcweir     else
390cdf0e10cSrcweir         throw NoConvergenceException(); // not likely to happen
391cdf0e10cSrcweir }
392cdf0e10cSrcweir 
393cdf0e10cSrcweir // See #i31656# for a commented version of this implementation, attachment #desc6
394cdf0e10cSrcweir // http://www.openoffice.org/nonav/issues/showattachment.cgi/63609/Comments%20to%20the%20implementation%20of%20the%20Bessel%20functions.odt
Bessely1(double fX)395cdf0e10cSrcweir double Bessely1( double fX ) throw( IllegalArgumentException, NoConvergenceException )
396cdf0e10cSrcweir {
397cdf0e10cSrcweir     if (fX <= 0)
398cdf0e10cSrcweir         throw IllegalArgumentException();
399cdf0e10cSrcweir     const double fMaxIteration = 9000000.0; // should not be reached
400cdf0e10cSrcweir     if (fX > 5.0e+6) // iteration is not considerable better then approximation
401cdf0e10cSrcweir         return - sqrt(1/f_PI/fX)
402cdf0e10cSrcweir                 *(rtl::math::sin(fX)+rtl::math::cos(fX));
403cdf0e10cSrcweir     const double epsilon = 1.0e-15;
404cdf0e10cSrcweir     const double EulerGamma = 0.57721566490153286060;
405cdf0e10cSrcweir     double alpha = 1.0/fX;
406cdf0e10cSrcweir     double f_bar = -1.0;
407cdf0e10cSrcweir     double g = 0.0;
408cdf0e10cSrcweir     double u = alpha;
409cdf0e10cSrcweir     double k = 1.0;
410cdf0e10cSrcweir     double m_bar = 0.0;
411cdf0e10cSrcweir     alpha = 1.0 - EulerGamma - log(fX/2.0);
412cdf0e10cSrcweir     double g_bar_delta_u = -alpha;
413cdf0e10cSrcweir     double g_bar = -2.0 / fX;
414cdf0e10cSrcweir     double delta_u = g_bar_delta_u / g_bar;
415cdf0e10cSrcweir     u = u + delta_u;
416cdf0e10cSrcweir     g = -1.0/g_bar;
417cdf0e10cSrcweir     f_bar = f_bar * g;
418cdf0e10cSrcweir     double sign_alpha = -1.0;
419cdf0e10cSrcweir     double km1mod2; //will be (k-1) mod 2
420cdf0e10cSrcweir     double q; // will be (k-1) div 2
421cdf0e10cSrcweir     bool bHasFound = false;
422cdf0e10cSrcweir     k = k + 1.0;
423cdf0e10cSrcweir     do
424cdf0e10cSrcweir     {
425cdf0e10cSrcweir         km1mod2 = fmod(k-1.0,2.0);
426cdf0e10cSrcweir         m_bar=(2.0*km1mod2) * f_bar;
427cdf0e10cSrcweir         q = (k-1.0)/2.0;
428cdf0e10cSrcweir         if (km1mod2 == 0.0) // k is odd
429cdf0e10cSrcweir         {
430cdf0e10cSrcweir            alpha = sign_alpha * (1.0/q + 1.0/(q+1.0));
431cdf0e10cSrcweir            sign_alpha = -sign_alpha;
432cdf0e10cSrcweir         }
433cdf0e10cSrcweir         else
434cdf0e10cSrcweir             alpha = 0.0;
435cdf0e10cSrcweir         g_bar_delta_u = f_bar * alpha - g * delta_u - m_bar * u;
436cdf0e10cSrcweir         g_bar = m_bar - (2.0*k)/fX + g;
437cdf0e10cSrcweir         delta_u = g_bar_delta_u / g_bar;
438cdf0e10cSrcweir         u = u+delta_u;
439cdf0e10cSrcweir         g = -1.0 / g_bar;
440cdf0e10cSrcweir         f_bar = f_bar*g;
441cdf0e10cSrcweir         bHasFound = (fabs(delta_u)<=fabs(u)*epsilon);
442cdf0e10cSrcweir         k=k+1;
443cdf0e10cSrcweir     }
444cdf0e10cSrcweir     while (!bHasFound && k<fMaxIteration);
445cdf0e10cSrcweir     if (bHasFound)
446cdf0e10cSrcweir         return -u*2.0/f_PI;
447cdf0e10cSrcweir     else
448cdf0e10cSrcweir         throw NoConvergenceException();
449cdf0e10cSrcweir }
450cdf0e10cSrcweir 
BesselY(double fNum,sal_Int32 nOrder)451cdf0e10cSrcweir double BesselY( double fNum, sal_Int32 nOrder ) throw( IllegalArgumentException, NoConvergenceException )
452cdf0e10cSrcweir {
453cdf0e10cSrcweir     switch( nOrder )
454cdf0e10cSrcweir     {
455cdf0e10cSrcweir         case 0:     return Bessely0( fNum );
456cdf0e10cSrcweir         case 1:     return Bessely1( fNum );
457cdf0e10cSrcweir         default:
458cdf0e10cSrcweir         {
459cdf0e10cSrcweir             double      fByp;
460cdf0e10cSrcweir 
461cdf0e10cSrcweir             double      fTox = 2.0 / fNum;
462cdf0e10cSrcweir             double      fBym = Bessely0( fNum );
463cdf0e10cSrcweir             double      fBy = Bessely1( fNum );
464cdf0e10cSrcweir 
465cdf0e10cSrcweir             for( sal_Int32 n = 1 ; n < nOrder ; n++ )
466cdf0e10cSrcweir             {
467cdf0e10cSrcweir                 fByp = double( n ) * fTox * fBy - fBym;
468cdf0e10cSrcweir                 fBym = fBy;
469cdf0e10cSrcweir                 fBy = fByp;
470cdf0e10cSrcweir             }
471cdf0e10cSrcweir 
472cdf0e10cSrcweir             return fBy;
473cdf0e10cSrcweir         }
474cdf0e10cSrcweir     }
475cdf0e10cSrcweir }
476cdf0e10cSrcweir 
477cdf0e10cSrcweir // ============================================================================
478cdf0e10cSrcweir 
479cdf0e10cSrcweir } // namespace analysis
480cdf0e10cSrcweir } // namespace sca
481cdf0e10cSrcweir 
482