xref: /AOO41X/main/vcl/source/gdi/pngread.cxx (revision 8809db7a87f97847b57a57f4cd2b0104b2b83182)
1 /**************************************************************
2  *
3  * Licensed to the Apache Software Foundation (ASF) under one
4  * or more contributor license agreements.  See the NOTICE file
5  * distributed with this work for additional information
6  * regarding copyright ownership.  The ASF licenses this file
7  * to you under the Apache License, Version 2.0 (the
8  * "License"); you may not use this file except in compliance
9  * with the License.  You may obtain a copy of the License at
10  *
11  *   http://www.apache.org/licenses/LICENSE-2.0
12  *
13  * Unless required by applicable law or agreed to in writing,
14  * software distributed under the License is distributed on an
15  * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
16  * KIND, either express or implied.  See the License for the
17  * specific language governing permissions and limitations
18  * under the License.
19  *
20  *************************************************************/
21 
22 
23 
24 // MARKER(update_precomp.py): autogen include statement, do not remove
25 #include "precompiled_vcl.hxx"
26 
27 #include <vcl/pngread.hxx>
28 
29 #include <cmath>
30 #include <rtl/crc.h>
31 #include <rtl/memory.h>
32 #include <rtl/alloc.h>
33 #include <tools/zcodec.hxx>
34 #include <tools/stream.hxx>
35 #include <vcl/bmpacc.hxx>
36 #include <vcl/svapp.hxx>
37 #include <vcl/alpha.hxx>
38 #include <osl/endian.h>
39 
40 // -----------
41 // - Defines -
42 // -----------
43 
44 #define PNGCHUNK_IHDR       0x49484452
45 #define PNGCHUNK_PLTE       0x504c5445
46 #define PNGCHUNK_IDAT       0x49444154
47 #define PNGCHUNK_IEND       0x49454e44
48 #define PNGCHUNK_bKGD       0x624b4744
49 #define PNGCHUNK_cHRM       0x6348524d
50 #define PNGCHUNK_gAMA       0x67414d41
51 #define PNGCHUNK_hIST       0x68495354
52 #define PNGCHUNK_pHYs       0x70485973
53 #define PNGCHUNK_sBIT       0x73425420
54 #define PNGCHUNK_tIME       0x74494d45
55 #define PNGCHUNK_tEXt       0x74455874
56 #define PNGCHUNK_tRNS       0x74524e53
57 #define PNGCHUNK_zTXt       0x7a545874
58 #define PMGCHUNG_msOG       0x6d734f47      // Microsoft Office Animated GIF
59 
60 #define VIEWING_GAMMA       2.35
61 #define DISPLAY_GAMMA       1.0
62 
63 namespace vcl
64 {
65 // -----------
66 // - statics -
67 // -----------
68 
69 // ------------------------------------------------------------------------------
70 
71 static const sal_uInt8 mpDefaultColorTable[ 256 ] =
72 {   0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
73     0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
74     0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
75     0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
76     0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
77     0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
78     0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
79     0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
80     0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
81     0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
82     0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
83     0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
84     0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
85     0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
86     0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
87     0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff
88 };
89 
90 // -------------
91 // - PNGReaderImpl -
92 // -------------
93 
94 class PNGReaderImpl
95 {
96 private:
97     SvStream&           mrPNGStream;
98     sal_uInt16          mnOrigStreamMode;
99 
100     std::vector< vcl::PNGReader::ChunkData >    maChunkSeq;
101     std::vector< vcl::PNGReader::ChunkData >::iterator maChunkIter;
102     std::vector< sal_uInt8 >::iterator          maDataIter;
103 
104     Bitmap*             mpBmp;
105     BitmapWriteAccess*  mpAcc;
106     Bitmap*             mpMaskBmp;
107     AlphaMask*          mpAlphaMask;
108     BitmapWriteAccess*  mpMaskAcc;
109     ZCodec*             mpZCodec;
110     sal_uInt8*              mpInflateInBuf; // as big as the size of a scanline + alphachannel + 1
111     sal_uInt8*              mpScanPrior;    // pointer to the latest scanline
112     sal_uInt8*              mpTransTab;     // for transparency in images with palette colortype
113     sal_uInt8*              mpScanCurrent;  // pointer into the current scanline
114     sal_uInt8*              mpColorTable;   //
115     sal_Size            mnStreamSize;   // estimate of PNG file size
116     sal_uInt32          mnChunkType;    // Type of current PNG chunk
117     sal_Int32           mnChunkLen;     // Length of current PNG chunk
118     Size                maOrigSize;     // pixel size of the full image
119     Size                maTargetSize;   // pixel size of the result image
120     Size                maPhysSize;     // prefered size in MAP_100TH_MM units
121     sal_uInt32          mnBPP;          // number of bytes per pixel
122     sal_uInt32          mnScansize;     // max size of scanline
123     sal_uInt32          mnYpos;         // latest y position in full image
124     int                 mnPass;         // if interlaced the latest pass ( 1..7 ) else 7
125     sal_uInt32          mnXStart;       // the starting X for the current pass
126     sal_uInt32          mnXAdd;         // the increment for input images X coords for the current pass
127     sal_uInt32          mnYAdd;         // the increment for input images Y coords for the current pass
128     int                 mnPreviewShift; // shift to convert orig image coords into preview image coords
129     int                 mnPreviewMask;  // == ((1 << mnPreviewShift) - 1)
130     sal_uInt16              mnIStmOldMode;
131     sal_uInt16              mnTargetDepth;      // pixel depth of target bitmap
132     sal_uInt8               mnTransRed;
133     sal_uInt8               mnTransGreen;
134     sal_uInt8               mnTransBlue;
135     sal_uInt8               mnPngDepth;     // pixel depth of PNG data
136     sal_uInt8               mnColorType;
137     sal_uInt8               mnCompressionType;
138     sal_uInt8               mnFilterType;
139     sal_uInt8               mnInterlaceType;
140     BitmapColor         mcTranspColor;  // transparency mask's transparency "color"
141     BitmapColor         mcOpaqueColor;  // transparency mask's opaque "color"
142     sal_Bool                mbTransparent;  // graphic includes an tRNS Chunk or an alpha Channel
143     sal_Bool                mbAlphaChannel; // is true for ColorType 4 and 6
144     sal_Bool                mbRGBTriple;
145     sal_Bool                mbPalette;      // sal_False if we need a Palette
146     sal_Bool                mbGrayScale;
147     sal_Bool                mbzCodecInUse;
148     sal_Bool                mbStatus;
149     sal_Bool                mbIDAT;         // sal_True if finished with enough IDAT chunks
150     sal_Bool                mbGamma;        // sal_True if Gamma Correction available
151     sal_Bool                mbpHYs;         // sal_True if pysical size of pixel available
152     sal_Bool            mbIgnoreGammaChunk;
153 
154     bool                ReadNextChunk();
155     void                ReadRemainingChunks();
156     void                SkipRemainingChunks();
157 
158     void                ImplSetPixel( sal_uInt32 y, sal_uInt32 x, const BitmapColor & );
159     void                ImplSetPixel( sal_uInt32 y, sal_uInt32 x, sal_uInt8 nPalIndex );
160     void                ImplSetTranspPixel( sal_uInt32 y, sal_uInt32 x, const BitmapColor &, sal_Bool bTrans );
161     void                ImplSetAlphaPixel( sal_uInt32 y, sal_uInt32 x, sal_uInt8 nPalIndex, sal_uInt8 nAlpha );
162     void                ImplSetAlphaPixel( sal_uInt32 y, sal_uInt32 x, const BitmapColor&, sal_uInt8 nAlpha );
163     void                ImplReadIDAT();
164     bool                ImplPreparePass();
165     void                ImplApplyFilter();
166     void                ImplDrawScanline( sal_uInt32 nXStart, sal_uInt32 nXAdd );
167     sal_Bool                ImplReadTransparent();
168     void                ImplGetGamma();
169     void                ImplGetBackground();
170     sal_uInt8               ImplScaleColor();
171     sal_Bool                ImplReadHeader( const Size& rPreviewSizeHint );
172     sal_Bool                ImplReadPalette();
173     void                ImplGetGrayPalette( sal_uInt16 );
174     sal_uInt32          ImplReadsal_uInt32();
175 
176 public:
177 
178                         PNGReaderImpl( SvStream& );
179                         ~PNGReaderImpl();
180 
181     BitmapEx            GetBitmapEx( const Size& rPreviewSizeHint );
182     const std::vector< PNGReader::ChunkData >& GetAllChunks();
183     void                SetIgnoreGammaChunk( sal_Bool bIgnore ){ mbIgnoreGammaChunk = bIgnore; };
184 };
185 
186 // ------------------------------------------------------------------------------
187 
188 PNGReaderImpl::PNGReaderImpl( SvStream& rPNGStream )
189 :   mrPNGStream( rPNGStream ),
190     mpBmp           ( NULL ),
191     mpAcc           ( NULL ),
192     mpMaskBmp       ( NULL ),
193     mpAlphaMask     ( NULL ),
194     mpMaskAcc       ( NULL ),
195     mpZCodec        ( new ZCodec( DEFAULT_IN_BUFSIZE, DEFAULT_OUT_BUFSIZE, MAX_MEM_USAGE ) ),
196     mpInflateInBuf  ( NULL ),
197     mpScanPrior     ( NULL ),
198     mpTransTab      ( NULL ),
199     mpColorTable    ( (sal_uInt8*) mpDefaultColorTable ),
200     mbzCodecInUse   ( sal_False ),
201     mbStatus( sal_True),
202     mbIDAT( sal_False ),
203     mbGamma             ( sal_False ),
204     mbpHYs              ( sal_False ),
205     mbIgnoreGammaChunk  ( sal_False )
206 {
207     // prepare the PNG data stream
208     mnOrigStreamMode = mrPNGStream.GetNumberFormatInt();
209     mrPNGStream.SetNumberFormatInt( NUMBERFORMAT_INT_BIGENDIAN );
210 
211     // prepare the chunk reader
212     maChunkSeq.reserve( 16 );
213     maChunkIter = maChunkSeq.begin();
214 
215     // estimate PNG file size (to allow sanity checks)
216     const sal_Size nStreamPos = mrPNGStream.Tell();
217     mrPNGStream.Seek( STREAM_SEEK_TO_END );
218     mnStreamSize = mrPNGStream.Tell();
219     mrPNGStream.Seek( nStreamPos );
220 
221     // check the PNG header magic
222     sal_uInt32 nDummy = 0;
223     mrPNGStream >> nDummy;
224     mbStatus = (nDummy == 0x89504e47);
225     mrPNGStream >> nDummy;
226     mbStatus &= (nDummy == 0x0d0a1a0a);
227 
228     mnPreviewShift = 0;
229     mnPreviewMask = (1 << mnPreviewShift) - 1;
230 }
231 
232 // ------------------------------------------------------------------------
233 
234 PNGReaderImpl::~PNGReaderImpl()
235 {
236     mrPNGStream.SetNumberFormatInt( mnOrigStreamMode );
237 
238     if ( mbzCodecInUse )
239         mpZCodec->EndCompression();
240 
241     if( mpColorTable != mpDefaultColorTable )
242         delete[] mpColorTable;
243 
244     delete mpBmp;
245     delete mpAlphaMask;
246     delete mpMaskBmp;
247     delete[] mpTransTab;
248     delete[] mpInflateInBuf;
249     delete[] mpScanPrior;
250     delete mpZCodec;
251 }
252 
253 // ------------------------------------------------------------------------
254 
255 bool PNGReaderImpl::ReadNextChunk()
256 {
257     if( maChunkIter == maChunkSeq.end() )
258     {
259         // get the next chunk from the stream
260 
261         // unless we are at the end of the PNG stream
262         if( mrPNGStream.IsEof() || (mrPNGStream.GetError() != ERRCODE_NONE) )
263             return false;
264         if( !maChunkSeq.empty() && (maChunkSeq.back().nType == PNGCHUNK_IEND) )
265             return false;
266 
267         PNGReader::ChunkData aDummyChunk;
268         maChunkIter = maChunkSeq.insert( maChunkSeq.end(), aDummyChunk );
269         PNGReader::ChunkData& rChunkData = *maChunkIter;
270 
271         // read the chunk header
272         mrPNGStream >> mnChunkLen >> mnChunkType;
273         rChunkData.nType = mnChunkType;
274 
275         // #128377#/#149343# sanity check for chunk length
276         if( mnChunkLen < 0 )
277             return false;
278         const sal_Size nStreamPos = mrPNGStream.Tell();
279         if( nStreamPos + mnChunkLen >= mnStreamSize )
280             return false;
281 
282         // calculate chunktype CRC (swap it back to original byte order)
283         sal_uInt32 nChunkType = mnChunkType;;
284         #if defined(__LITTLEENDIAN) || defined(OSL_LITENDIAN)
285         nChunkType = SWAPLONG( nChunkType );
286         #endif
287         sal_uInt32 nCRC32 = rtl_crc32( 0, &nChunkType, 4 );
288 
289         // read the chunk data and check the CRC
290         if( mnChunkLen && !mrPNGStream.IsEof() )
291         {
292             rChunkData.aData.resize( mnChunkLen );
293 
294             sal_Int32 nBytesRead = 0;
295             do {
296                 sal_uInt8* pPtr = &rChunkData.aData[ nBytesRead ];
297                 nBytesRead += mrPNGStream.Read( pPtr, mnChunkLen - nBytesRead );
298             } while ( ( nBytesRead < mnChunkLen ) && ( mrPNGStream.GetError() == ERRCODE_NONE ) );
299 
300             nCRC32 = rtl_crc32( nCRC32, &rChunkData.aData[ 0 ], mnChunkLen );
301             maDataIter = rChunkData.aData.begin();
302         }
303         sal_uInt32 nCheck;
304         mrPNGStream >> nCheck;
305         if( nCRC32 != nCheck )
306             return false;
307     }
308     else
309     {
310         // the next chunk was already read
311         mnChunkType = (*maChunkIter).nType;
312         mnChunkLen = (*maChunkIter).aData.size();
313         maDataIter = (*maChunkIter).aData.begin();
314     }
315 
316     ++maChunkIter;
317     if( mnChunkType == PNGCHUNK_IEND )
318         return false;
319     return true;
320 }
321 
322 // ------------------------------------------------------------------------
323 
324 // read the remaining chunks from mrPNGStream
325 void PNGReaderImpl::ReadRemainingChunks()
326 {
327     while( ReadNextChunk() ) ;
328 }
329 
330 // ------------------------------------------------------------------------
331 
332 // move position of mrPNGStream to the end of the file
333 void PNGReaderImpl::SkipRemainingChunks()
334 {
335     // nothing to skip if the last chunk was read
336     if( !maChunkSeq.empty() && (maChunkSeq.back().nType == PNGCHUNK_IEND) )
337         return;
338 
339     // read from the stream until the IEND chunk is found
340     const sal_Size nStreamPos = mrPNGStream.Tell();
341     while( !mrPNGStream.IsEof() && (mrPNGStream.GetError() == ERRCODE_NONE) )
342     {
343         mrPNGStream >> mnChunkLen >> mnChunkType;
344         if( mnChunkLen < 0 )
345             break;
346         if( nStreamPos + mnChunkLen >= mnStreamSize )
347             break;
348         mrPNGStream.SeekRel( mnChunkLen + 4 );  // skip data + CRC
349         if( mnChunkType == PNGCHUNK_IEND )
350             break;
351     }
352 }
353 
354 // ------------------------------------------------------------------------
355 
356 const std::vector< vcl::PNGReader::ChunkData >& PNGReaderImpl::GetAllChunks()
357 {
358     ReadRemainingChunks();
359     return maChunkSeq;
360 }
361 
362 // ------------------------------------------------------------------------
363 
364 BitmapEx PNGReaderImpl::GetBitmapEx( const Size& rPreviewSizeHint )
365 {
366     // reset to the first chunk
367     maChunkIter = maChunkSeq.begin();
368 
369     // parse the chunks
370     while( mbStatus && !mbIDAT && ReadNextChunk() )
371     {
372         switch( mnChunkType )
373         {
374             case PNGCHUNK_IHDR :
375             {
376                 mbStatus = ImplReadHeader( rPreviewSizeHint );
377             }
378             break;
379 
380             case PNGCHUNK_gAMA :                                // the gamma chunk must precede
381             {                                                   // the 'IDAT' and also the 'PLTE'(if available )
382                 if ( !mbIgnoreGammaChunk && ( mbIDAT == sal_False ) )
383                     ImplGetGamma();
384             }
385             break;
386 
387             case PNGCHUNK_PLTE :
388             {
389                 if ( !mbPalette )
390                     mbStatus = ImplReadPalette();
391             }
392             break;
393 
394             case PNGCHUNK_tRNS :
395             {
396                 if ( !mbIDAT )                                  // the tRNS chunk must precede the IDAT
397                     mbStatus = ImplReadTransparent();
398             }
399             break;
400 
401             case PNGCHUNK_bKGD :                                // the background chunk must appear
402             {
403                 if ( ( mbIDAT == sal_False ) && mbPalette )         // before the 'IDAT' and after the
404                     ImplGetBackground();                        // PLTE(if available ) chunk.
405             }
406             break;
407 
408             case PNGCHUNK_IDAT :
409             {
410                 if ( !mpInflateInBuf )  // taking care that the header has properly been read
411                     mbStatus = sal_False;
412                 else if ( !mbIDAT )     // the gfx is finished, but there may be left a zlibCRC of about 4Bytes
413                     ImplReadIDAT();
414             }
415             break;
416 
417             case PNGCHUNK_pHYs :
418             {
419                 if ( !mbIDAT && mnChunkLen == 9 )
420                 {
421                     sal_uInt32 nXPixelPerMeter = ImplReadsal_uInt32();
422                     sal_uInt32 nYPixelPerMeter = ImplReadsal_uInt32();
423 
424                     sal_uInt8 nUnitSpecifier = *maDataIter++;
425                     if( (nUnitSpecifier == 1) && nXPixelPerMeter && nXPixelPerMeter )
426                     {
427                         mbpHYs = sal_True;
428 
429                         // convert into MAP_100TH_MM
430                         maPhysSize.Width()  = (sal_Int32)( (100000.0 * maOrigSize.Width()) / nXPixelPerMeter );
431                         maPhysSize.Height() = (sal_Int32)( (100000.0 * maOrigSize.Height()) / nYPixelPerMeter );
432                     }
433                 }
434             }
435             break;
436 
437             case PNGCHUNK_IEND:
438                 mbStatus = mbIDAT;  // there is a problem if the image is not complete yet
439             break;
440         }
441     }
442 
443     // release write access of the bitmaps
444     if ( mpAcc )
445         mpBmp->ReleaseAccess( mpAcc ), mpAcc = NULL;
446 
447     if ( mpMaskAcc )
448     {
449         if ( mpAlphaMask )
450             mpAlphaMask->ReleaseAccess( mpMaskAcc );
451         else if ( mpMaskBmp )
452             mpMaskBmp->ReleaseAccess( mpMaskAcc );
453 
454         mpMaskAcc = NULL;
455     }
456 
457     // return the resulting BitmapEx
458     BitmapEx aRet;
459 
460     if( !mbStatus || !mbIDAT )
461         aRet.Clear();
462     else
463     {
464         if ( mpAlphaMask )
465             aRet = BitmapEx( *mpBmp, *mpAlphaMask );
466         else if ( mpMaskBmp )
467             aRet = BitmapEx( *mpBmp, *mpMaskBmp );
468         else
469             aRet = *mpBmp;
470 
471         if ( mbpHYs && maPhysSize.Width() && maPhysSize.Height() )
472         {
473             aRet.SetPrefMapMode( MAP_100TH_MM );
474             aRet.SetPrefSize( maPhysSize );
475         }
476 
477 #if 0
478         // TODO: make sure nobody depends on the stream being after the IEND chunks
479         // => let them do ReadChunks before
480         ReadRemainingChunks();
481 #endif
482     }
483 
484     return aRet;
485 }
486 
487 // ------------------------------------------------------------------------
488 
489 sal_Bool PNGReaderImpl::ImplReadHeader( const Size& rPreviewSizeHint )
490 {
491     if( mnChunkLen < 13 )
492         return sal_False;
493 
494     maOrigSize.Width()  = ImplReadsal_uInt32();
495     maOrigSize.Height() = ImplReadsal_uInt32();
496 
497     if ( !maOrigSize.Width() || !maOrigSize.Height() )
498         return sal_False;
499 
500     mnPngDepth = *(maDataIter++);
501     mnColorType = *(maDataIter++);
502 
503     mnCompressionType = *(maDataIter++);
504     if( mnCompressionType != 0 )    // unknown compression type
505         return sal_False;
506 
507     mnFilterType = *(maDataIter++);
508     if( mnFilterType != 0 )         // unknown filter type
509         return sal_False;
510 
511     mnInterlaceType = *(maDataIter++);
512     switch ( mnInterlaceType ) // filter type valid ?
513     {
514         case 0 :  // progressive image
515             mnPass = 7;
516             break;
517         case 1 :  // Adam7-interlaced image
518             mnPass = 0;
519             break;
520         default:
521             return sal_False;
522     }
523 
524     mbPalette = sal_True;
525     mbIDAT = mbAlphaChannel = mbTransparent = sal_False;
526     mbGrayScale = mbRGBTriple = sal_False;
527     mnTargetDepth = mnPngDepth;
528     sal_uInt64 nScansize64 = ( ( static_cast< sal_uInt64 >( maOrigSize.Width() ) * mnPngDepth ) + 7 ) >> 3;
529 
530     // valid color types are 0,2,3,4 & 6
531     switch ( mnColorType )
532     {
533         case 0 :    // each pixel is a grayscale
534         {
535             switch ( mnPngDepth )
536             {
537                 case 2 : // 2bit target not available -> use four bits
538                     mnTargetDepth = 4;  // we have to expand the bitmap
539                     mbGrayScale = sal_True;
540                     break;
541                 case 16 :
542                     mnTargetDepth = 8;  // we have to reduce the bitmap
543                     // fall through
544                 case 1 :
545                 case 4 :
546                 case 8 :
547                     mbGrayScale = sal_True;
548                     break;
549                 default :
550                     return sal_False;
551             }
552         }
553         break;
554 
555         case 2 :    // each pixel is an RGB triple
556         {
557             mbRGBTriple = sal_True;
558             nScansize64 *= 3;
559             switch ( mnPngDepth )
560             {
561                 case 16 :           // we have to reduce the bitmap
562                 case 8 :
563                     mnTargetDepth = 24;
564                     break;
565                 default :
566                     return sal_False;
567             }
568         }
569         break;
570 
571         case 3 :    // each pixel is a palette index
572         {
573             switch ( mnPngDepth )
574             {
575                 case 2 :
576                     mnTargetDepth = 4;  // we have to expand the bitmap
577                     // fall through
578                 case 1 :
579                 case 4 :
580                 case 8 :
581                     mbPalette = sal_False;
582                     break;
583                 default :
584                     return sal_False;
585             }
586         }
587         break;
588 
589         case 4 :    // each pixel is a grayscale sample followed by an alpha sample
590         {
591             nScansize64 *= 2;
592             mbAlphaChannel = sal_True;
593             switch ( mnPngDepth )
594             {
595                 case 16 :
596                     mnTargetDepth = 8;  // we have to reduce the bitmap
597                 case 8 :
598                     mbGrayScale = sal_True;
599                     break;
600                 default :
601                     return sal_False;
602             }
603         }
604         break;
605 
606         case 6 :    // each pixel is an RGB triple followed by an alpha sample
607         {
608             mbRGBTriple = sal_True;
609             nScansize64 *= 4;
610             mbAlphaChannel = sal_True;
611             switch (mnPngDepth )
612             {
613                 case 16 :           // we have to reduce the bitmap
614                 case 8 :
615                     mnTargetDepth = 24;
616                     break;
617                 default :
618                     return sal_False;
619             }
620         }
621         break;
622 
623         default :
624             return sal_False;
625     }
626 
627     mnBPP = static_cast< sal_uInt32 >( nScansize64 / maOrigSize.Width() );
628     if ( !mnBPP )
629         mnBPP = 1;
630 
631     nScansize64++;       // each scanline includes one filterbyte
632 
633     if ( nScansize64 > SAL_MAX_UINT32 )
634         return sal_False;
635 
636     mnScansize = static_cast< sal_uInt32 >( nScansize64 );
637 
638     // TODO: switch between both scanlines instead of copying
639     mpInflateInBuf = new (std::nothrow) sal_uInt8[ mnScansize ];
640     mpScanCurrent = mpInflateInBuf;
641     mpScanPrior = new (std::nothrow) sal_uInt8[ mnScansize ];
642 
643     if ( !mpInflateInBuf || !mpScanPrior )
644         return sal_False;
645 
646     // calculate target size from original size and the preview hint
647     if( rPreviewSizeHint.Width() || rPreviewSizeHint.Height() )
648     {
649         Size aPreviewSize( rPreviewSizeHint.Width(), rPreviewSizeHint.Height() );
650         maTargetSize = maOrigSize;
651 
652         if( aPreviewSize.Width() == 0 ) {
653             aPreviewSize.setWidth( ( maOrigSize.Width()*aPreviewSize.Height() )/maOrigSize.Height() );
654             if( aPreviewSize.Width() <= 0 )
655                 aPreviewSize.setWidth( 1 );
656         } else if( aPreviewSize.Height() == 0 ) {
657             aPreviewSize.setHeight( ( maOrigSize.Height()*aPreviewSize.Width() )/maOrigSize.Width() );
658             if( aPreviewSize.Height() <= 0 )
659                 aPreviewSize.setHeight( 1 );
660         }
661 
662         if( aPreviewSize.Width() < maOrigSize.Width() && aPreviewSize.Height() < maOrigSize.Height() ) {
663             OSL_TRACE("preview size %dx%d", aPreviewSize.Width(), aPreviewSize.Height() );
664 
665             for( int i = 1; i < 5; ++i )
666                 {
667                     if( (maTargetSize.Width() >> i) < aPreviewSize.Width() )
668                         break;
669                     if( (maTargetSize.Height() >> i) < aPreviewSize.Height() )
670                         break;
671                     mnPreviewShift = i;
672                 }
673             mnPreviewMask = (1 << mnPreviewShift) - 1;
674         }
675     }
676 
677     maTargetSize.Width()  = (maOrigSize.Width() + mnPreviewMask) >> mnPreviewShift;
678     maTargetSize.Height() = (maOrigSize.Height() + mnPreviewMask) >> mnPreviewShift;
679 
680     mpBmp = new Bitmap( maTargetSize, mnTargetDepth );
681     mpAcc = mpBmp->AcquireWriteAccess();
682     if( !mpAcc )
683         return sal_False;
684 
685     mpBmp->SetSourceSizePixel( maOrigSize );
686 
687     if ( mbAlphaChannel )
688     {
689         mpAlphaMask = new AlphaMask( maTargetSize );
690         mpAlphaMask->Erase( 128 );
691         mpMaskAcc = mpAlphaMask->AcquireWriteAccess();
692         if( !mpMaskAcc )
693             return sal_False;
694     }
695 
696     if ( mbGrayScale )
697         ImplGetGrayPalette( mnPngDepth );
698 
699     ImplPreparePass();
700 
701     return sal_True;
702 }
703 
704 // ------------------------------------------------------------------------
705 
706 void PNGReaderImpl::ImplGetGrayPalette( sal_uInt16 nBitDepth )
707 {
708     if( nBitDepth > 8 )
709         nBitDepth = 8;
710 
711     sal_uInt16  nPaletteEntryCount = 1 << nBitDepth;
712     sal_uInt32  nAdd = nBitDepth ? 256 / (nPaletteEntryCount - 1) : 0;
713 
714     // no bitdepth==2 available
715     // but bitdepth==4 with two unused bits is close enough
716     if( nBitDepth == 2 )
717         nPaletteEntryCount = 16;
718 
719     mpAcc->SetPaletteEntryCount( nPaletteEntryCount );
720     for ( sal_uInt32 i = 0, nStart = 0; nStart < 256; i++, nStart += nAdd )
721         mpAcc->SetPaletteColor( (sal_uInt16)i, BitmapColor( mpColorTable[ nStart ],
722             mpColorTable[ nStart ], mpColorTable[ nStart ] ) );
723 }
724 
725 // ------------------------------------------------------------------------
726 
727 sal_Bool PNGReaderImpl::ImplReadPalette()
728 {
729     sal_uInt16 nCount = static_cast<sal_uInt16>( mnChunkLen / 3 );
730 
731     if ( ( ( mnChunkLen % 3 ) == 0 ) && ( ( 0 < nCount ) && ( nCount <= 256 ) ) && mpAcc )
732     {
733         mbPalette = sal_True;
734         mpAcc->SetPaletteEntryCount( (sal_uInt16) nCount );
735 
736         for ( sal_uInt16 i = 0; i < nCount; i++ )
737         {
738             sal_uInt8 nRed =   mpColorTable[ *maDataIter++ ];
739             sal_uInt8 nGreen = mpColorTable[ *maDataIter++ ];
740             sal_uInt8 nBlue =  mpColorTable[ *maDataIter++ ];
741             mpAcc->SetPaletteColor( i, Color( nRed, nGreen, nBlue ) );
742         }
743     }
744     else
745         mbStatus = sal_False;
746 
747     return mbStatus;
748 }
749 
750 // ------------------------------------------------------------------------
751 
752 sal_Bool PNGReaderImpl::ImplReadTransparent()
753 {
754     bool bNeedAlpha = false;
755 
756     if ( mpTransTab == NULL )
757     {
758         switch ( mnColorType )
759         {
760             case 0 :
761             {
762                 if ( mnChunkLen == 2 )
763                 {
764                     mpTransTab = new sal_uInt8[ 256 ];
765                     rtl_fillMemory( mpTransTab, 256, 0xff );
766                     // color type 0 and 4 is always greyscale,
767                     // so the return value can be used as index
768                     sal_uInt8 nIndex = ImplScaleColor();
769                     mpTransTab[ nIndex ] = 0;
770                     mbTransparent = true;
771                 }
772             }
773             break;
774 
775             case 2 :
776             {
777                 if ( mnChunkLen == 6 )
778                 {
779                     mnTransRed = ImplScaleColor();
780                     mnTransGreen = ImplScaleColor();
781                     mnTransBlue = ImplScaleColor();
782                     mbTransparent = true;
783                 }
784             }
785             break;
786 
787             case 3 :
788             {
789                 if ( mnChunkLen <= 256 )
790                 {
791                     mpTransTab = new sal_uInt8 [ 256 ];
792                     rtl_fillMemory( mpTransTab, 256, 0xff );
793                     rtl_copyMemory( mpTransTab, &(*maDataIter), mnChunkLen );
794                     maDataIter += mnChunkLen;
795                     mbTransparent = true;
796                     // need alpha transparency if not on/off masking
797                     for( int i = 0; i < mnChunkLen; ++i )
798                        bNeedAlpha |= (mpTransTab[i]!=0x00) && (mpTransTab[i]!=0xFF);
799                 }
800             }
801             break;
802         }
803     }
804 
805     if( mbTransparent && !mbAlphaChannel && !mpMaskBmp )
806     {
807         if( bNeedAlpha)
808         {
809             mpAlphaMask = new AlphaMask( maTargetSize );
810             mpMaskAcc = mpAlphaMask->AcquireWriteAccess();
811         }
812         else
813         {
814             mpMaskBmp = new Bitmap( maTargetSize, 1 );
815             mpMaskAcc = mpMaskBmp->AcquireWriteAccess();
816         }
817         mbTransparent = (mpMaskAcc != NULL);
818         if( !mbTransparent )
819             return sal_False;
820         mcOpaqueColor = BitmapColor( 0x00 );
821         mcTranspColor = BitmapColor( 0xFF );
822         mpMaskAcc->Erase( 0x00 );
823     }
824 
825     return sal_True;
826 }
827 
828 // ------------------------------------------------------------------------
829 
830 void PNGReaderImpl::ImplGetGamma()
831 {
832     if( mnChunkLen < 4 )
833         return;
834 
835     sal_uInt32  nGammaValue = ImplReadsal_uInt32();
836     double      fGamma = ( ( VIEWING_GAMMA / DISPLAY_GAMMA ) * ( (double)nGammaValue / 100000 ) );
837     double      fInvGamma = ( fGamma <= 0.0 || fGamma > 10.0 ) ? 1.0 : ( 1.0 / fGamma );
838 
839     if ( fInvGamma != 1.0 )
840     {
841         mbGamma = sal_True;
842 
843         if ( mpColorTable == mpDefaultColorTable )
844             mpColorTable = new sal_uInt8[ 256 ];
845 
846         for ( sal_Int32 i = 0; i < 256; i++ )
847             mpColorTable[ i ] = (sal_uInt8)(pow((double)i/255.0, fInvGamma) * 255.0 + 0.5);
848 
849         if ( mbGrayScale )
850             ImplGetGrayPalette( mnPngDepth );
851     }
852 }
853 
854 // ------------------------------------------------------------------------
855 
856 void PNGReaderImpl::ImplGetBackground()
857 {
858     switch ( mnColorType )
859     {
860         case 3 :
861         {
862             if ( mnChunkLen == 1 )
863             {
864                 sal_uInt16 nCol = *maDataIter++;
865                 if ( nCol < mpAcc->GetPaletteEntryCount() )
866                 {
867                     mpAcc->Erase( mpAcc->GetPaletteColor( (sal_uInt8)nCol ) );
868                     break;
869                 }
870             }
871         }
872         break;
873 
874         case 0 :
875         case 4 :
876         {
877             if ( mnChunkLen == 2 )
878             {
879                 // the color type 0 and 4 is always greyscale,
880                 // so the return value can be used as index
881                 sal_uInt8 nIndex = ImplScaleColor();
882                 mpAcc->Erase( mpAcc->GetPaletteColor( nIndex ) );
883             }
884         }
885         break;
886 
887         case 2 :
888         case 6 :
889         {
890             if ( mnChunkLen == 6 )
891             {
892                 sal_uInt8 nRed = ImplScaleColor();
893                 sal_uInt8 nGreen = ImplScaleColor();
894                 sal_uInt8 nBlue = ImplScaleColor();
895                 mpAcc->Erase( Color( nRed, nGreen, nBlue ) );
896             }
897         }
898         break;
899     }
900 }
901 
902 // ------------------------------------------------------------------------
903 
904 // for color type 0 and 4 (greyscale) the return value is always index to the color
905 //                2 and 6 (RGB)       the return value is always the 8 bit color component
906 sal_uInt8 PNGReaderImpl::ImplScaleColor()
907 {
908     sal_uInt32 nMask = ( ( 1 << mnPngDepth ) - 1 );
909     sal_uInt16 nCol = ( *maDataIter++ << 8 );
910 
911     nCol += *maDataIter++ & (sal_uInt16)nMask;
912 
913     if ( mnPngDepth > 8 )   // convert 16bit graphics to 8
914         nCol >>= 8;
915 
916     return (sal_uInt8) nCol;
917 }
918 
919 // ------------------------------------------------------------------------
920 // ImplReadIDAT reads as much image data as needed
921 
922 void PNGReaderImpl::ImplReadIDAT()
923 {
924     if( mnChunkLen > 0 )
925     {
926         if ( mbzCodecInUse == sal_False )
927         {
928             mbzCodecInUse = sal_True;
929             mpZCodec->BeginCompression( ZCODEC_PNG_DEFAULT );
930         }
931         mpZCodec->SetBreak( mnChunkLen );
932         SvMemoryStream aIStrm( &(*maDataIter), mnChunkLen, STREAM_READ );
933 
934         while ( ( mpZCodec->GetBreak() ) )
935         {
936             // get bytes needed to fill the current scanline
937             sal_Int32 nToRead = mnScansize - (mpScanCurrent - mpInflateInBuf);
938             sal_Int32 nRead = mpZCodec->ReadAsynchron( aIStrm, mpScanCurrent, nToRead );
939             if ( nRead < 0 )
940             {
941                 mbStatus = sal_False;
942                 break;
943             }
944             if ( nRead < nToRead )
945             {
946                 mpScanCurrent += nRead; // more ZStream data in the next IDAT chunk
947                 break;
948             }
949             else  // this scanline is Finished
950             {
951                 mpScanCurrent = mpInflateInBuf;
952                 ImplApplyFilter();
953 
954                 ImplDrawScanline( mnXStart, mnXAdd );
955                 mnYpos += mnYAdd;
956             }
957 
958             if ( mnYpos >= (sal_uInt32)maOrigSize.Height() )
959             {
960                 if( (mnPass < 7) && mnInterlaceType )
961                     if( ImplPreparePass() )
962                         continue;
963                 mbIDAT = true;
964                 break;
965             }
966         }
967     }
968 
969     if( mbIDAT )
970     {
971         mpZCodec->EndCompression();
972         mbzCodecInUse = sal_False;
973     }
974 }
975 
976 // ---------------------------------------------------------------------------------------------------
977 
978 bool PNGReaderImpl::ImplPreparePass()
979 {
980     struct InterlaceParams{ int mnXStart, mnYStart, mnXAdd, mnYAdd; };
981     static const InterlaceParams aInterlaceParams[8] =
982     {
983         // non-interlaced
984         { 0, 0, 1, 1 },
985         // Adam7-interlaced
986         { 0, 0, 8, 8 },    // pass 1
987         { 4, 0, 8, 8 },    // pass 2
988         { 0, 4, 4, 8 },    // pass 3
989         { 2, 0, 4, 4 },    // pass 4
990         { 0, 2, 2, 4 },    // pass 5
991         { 1, 0, 2, 2 },    // pass 6
992         { 0, 1, 1, 2 }     // pass 7
993     };
994 
995     const InterlaceParams* pParam = &aInterlaceParams[ 0 ];
996     if( mnInterlaceType )
997     {
998         while( ++mnPass <= 7 )
999         {
1000             pParam = &aInterlaceParams[ mnPass ];
1001 
1002             // skip this pass if the original image is too small for it
1003             if( (pParam->mnXStart < maOrigSize.Width())
1004             &&  (pParam->mnYStart < maOrigSize.Height()) )
1005                 break;
1006         }
1007         if( mnPass > 7 )
1008             return false;
1009 
1010         // skip the last passes if possible (for scaled down target images)
1011         if( mnPreviewMask & (pParam->mnXStart | pParam->mnYStart) )
1012             return false;
1013     }
1014 
1015     mnYpos      = pParam->mnYStart;
1016     mnXStart    = pParam->mnXStart;
1017     mnXAdd      = pParam->mnXAdd;
1018     mnYAdd      = pParam->mnYAdd;
1019 
1020     // in Interlace mode the size of scanline is not constant
1021     // so first we calculate the number of entrys
1022     long nScanWidth = (maOrigSize.Width() - mnXStart + mnXAdd - 1) / mnXAdd;
1023     mnScansize = nScanWidth;
1024 
1025     if( mbRGBTriple )
1026         mnScansize = 3 * nScanWidth;
1027 
1028     if( mbAlphaChannel )
1029         mnScansize += nScanWidth;
1030 
1031     // convert to width in bytes
1032     mnScansize = ( mnScansize*mnPngDepth + 7 ) >> 3;
1033 
1034     ++mnScansize; // scan size also needs room for the filtertype byte
1035     rtl_zeroMemory( mpScanPrior, mnScansize );
1036 
1037     return true;
1038 }
1039 
1040 // ----------------------------------------------------------------------------
1041 // ImplApplyFilter writes the complete Scanline (nY)
1042 // in interlace mode the parameter nXStart and nXAdd are non-zero
1043 
1044 void PNGReaderImpl::ImplApplyFilter()
1045 {
1046     OSL_ASSERT( mnScansize >= mnBPP + 1 );
1047     const sal_uInt8* const pScanEnd = mpInflateInBuf + mnScansize;
1048 
1049     sal_uInt8 nFilterType = *mpInflateInBuf; // the filter type may change each scanline
1050     switch ( nFilterType )
1051     {
1052         default: // unknown Scanline Filter Type
1053         case 0: // Filter Type "None"
1054             // we let the pixels pass and display the data unfiltered
1055             break;
1056 
1057         case 1: // Scanline Filter Type "Sub"
1058         {
1059             sal_uInt8* p1 = mpInflateInBuf + 1;
1060             const sal_uInt8* p2 = p1;
1061             p1 += mnBPP;
1062 
1063             // use left pixels
1064             do
1065                 *p1 = static_cast<sal_uInt8>( *p1 + *(p2++) );
1066             while( ++p1 < pScanEnd );
1067         }
1068         break;
1069 
1070         case 2: // Scanline Filter Type "Up"
1071         {
1072             sal_uInt8* p1 = mpInflateInBuf + 1;
1073             const sal_uInt8* p2 = mpScanPrior + 1;
1074 
1075             // use pixels from prior line
1076             while( p1 < pScanEnd )
1077             {
1078                 *p1 = static_cast<sal_uInt8>( *p1 + *(p2++) );
1079                 ++p1;
1080             }
1081         }
1082         break;
1083 
1084         case 3: // Scanline Filter Type "Average"
1085         {
1086             sal_uInt8* p1 = mpInflateInBuf + 1;
1087             const sal_uInt8* p2 = mpScanPrior + 1;
1088             const sal_uInt8* p3 = p1;
1089 
1090             // use one pixel from prior line
1091             for( int n = mnBPP; --n >= 0; ++p1, ++p2)
1092                 *p1 = static_cast<sal_uInt8>( *p1 + (*p2 >> 1) );
1093 
1094             // predict by averaging the left and prior line pixels
1095             while( p1 < pScanEnd )
1096             {
1097                 *p1 = static_cast<sal_uInt8>( *p1 + ((*(p2++) + *(p3++)) >> 1) );
1098                 ++p1;
1099             }
1100         }
1101         break;
1102 
1103         case 4: // Scanline Filter Type "PaethPredictor"
1104         {
1105             sal_uInt8* p1 = mpInflateInBuf + 1;
1106             const sal_uInt8* p2 = mpScanPrior + 1;
1107             const sal_uInt8* p3 = p1;
1108             const sal_uInt8* p4 = p2;
1109 
1110             // use one pixel from prior line
1111             for( int n = mnBPP; --n >= 0; ++p1)
1112                 *p1 = static_cast<sal_uInt8>( *p1 + *(p2++) );
1113 
1114             // predict by using the left and the prior line pixels
1115             while( p1 < pScanEnd )
1116             {
1117                 int na = *(p2++);
1118                 int nb = *(p3++);
1119                 int nc = *(p4++);
1120 
1121                 int npa = nb - (int)nc;
1122                 int npb = na - (int)nc;
1123                 int npc = npa + npb;
1124 
1125                 if( npa < 0 )
1126                     npa =-npa;
1127                 if( npb < 0 )
1128                     npb =-npb;
1129                 if( npc < 0 )
1130                     npc =-npc;
1131 
1132                 if( npa > npb )
1133                     na = nb, npa = npb;
1134                 if( npa > npc )
1135                     na = nc;
1136 
1137                 *p1 = static_cast<sal_uInt8>( *p1 + na );
1138                 ++p1;
1139             }
1140         }
1141         break;
1142     }
1143 
1144     rtl_copyMemory( mpScanPrior, mpInflateInBuf, mnScansize );
1145 }
1146 
1147 // ---------------------------------------------------------------------------------------------------
1148 // ImplDrawScanlines draws the complete Scanline (nY) into the target bitmap
1149 // In interlace mode the parameter nXStart and nXAdd append to the currently used pass
1150 
1151 void PNGReaderImpl::ImplDrawScanline( sal_uInt32 nXStart, sal_uInt32 nXAdd )
1152 {
1153     // optimization for downscaling
1154     if( mnYpos & mnPreviewMask )
1155         return;
1156     if( nXStart & mnPreviewMask )
1157         return;
1158 
1159     // convert nY to pixel units in the target image
1160     // => TODO; also do this for nX here instead of in the ImplSet*Pixel() methods
1161     const sal_uInt32 nY = mnYpos >> mnPreviewShift;
1162 
1163     const sal_uInt8* pTmp = mpInflateInBuf + 1;
1164     if ( mpAcc->HasPalette() ) // alphachannel is not allowed by pictures including palette entries
1165     {
1166         switch ( mpAcc->GetBitCount() )
1167         {
1168             case 1 :
1169             {
1170                 if ( mbTransparent )
1171                 {
1172                     for ( sal_Int32 nX = nXStart, nShift = 0; nX < maOrigSize.Width(); nX += nXAdd )
1173                     {
1174                         sal_uInt8 nCol;
1175                         nShift = (nShift - 1) & 7;
1176                         if ( nShift == 0 )
1177                             nCol = *(pTmp++);
1178                         else
1179                             nCol = static_cast<sal_uInt8>( *pTmp >> nShift );
1180                         nCol &= 1;
1181 
1182                         ImplSetAlphaPixel( nY, nX, nCol, mpTransTab[ nCol ] );
1183                     }
1184                 }
1185                 else
1186                 {   // BMP_FORMAT_1BIT_MSB_PAL
1187                     for ( sal_Int32 nX = nXStart, nShift = 0; nX < maOrigSize.Width(); nX += nXAdd )
1188                     {
1189                         nShift = (nShift - 1) & 7;
1190 
1191                         sal_uInt8 nCol;
1192                         if ( nShift == 0 )
1193                             nCol = *(pTmp++);
1194                         else
1195                             nCol = static_cast<sal_uInt8>( *pTmp >> nShift );
1196                         nCol &= 1;
1197 
1198                         ImplSetPixel( nY, nX, nCol );
1199                     }
1200                 }
1201             }
1202             break;
1203 
1204             case 4 :
1205             {
1206                 if ( mbTransparent )
1207                 {
1208                     if ( mnPngDepth == 4 )  // check if source has a two bit pixel format
1209                     {
1210                         for ( sal_Int32 nX = nXStart, nXIndex = 0; nX < maOrigSize.Width(); nX += nXAdd, ++nXIndex )
1211                         {
1212                             if( nXIndex & 1 )
1213                             {
1214                                 ImplSetAlphaPixel( nY, nX, *pTmp & 0x0f, mpTransTab[ *pTmp & 0x0f ] );
1215                                 pTmp++;
1216                             }
1217                             else
1218                             {
1219                                 ImplSetAlphaPixel( nY, nX, ( *pTmp >> 4 ) & 0x0f, mpTransTab[ *pTmp >> 4 ] );
1220                             }
1221                         }
1222                     }
1223                     else // if ( mnPngDepth == 2 )
1224                     {
1225                         for ( sal_Int32 nX = nXStart, nXIndex = 0; nX < maOrigSize.Width(); nX += nXAdd, nXIndex++ )
1226                         {
1227                             sal_uInt8 nCol;
1228                             switch( nXIndex & 3 )
1229                             {
1230                                 case 0 :
1231                                     nCol = *pTmp >> 6;
1232                                 break;
1233 
1234                                 case 1 :
1235                                     nCol = ( *pTmp >> 4 ) & 0x03 ;
1236                                 break;
1237 
1238                                 case 2 :
1239                                     nCol = ( *pTmp >> 2 ) & 0x03;
1240                                 break;
1241 
1242                                 case 3 :
1243                                     nCol = ( *pTmp++ ) & 0x03;
1244                                 break;
1245 
1246                                 default:    // get rid of nCol uninitialized warning
1247                                     nCol = 0;
1248                                     break;
1249                             }
1250 
1251                             ImplSetAlphaPixel( nY, nX, nCol, mpTransTab[ nCol ] );
1252                         }
1253                     }
1254                 }
1255                 else
1256                 {
1257                     if ( mnPngDepth == 4 )  // maybe the source is a two bitmap graphic
1258                     {   // BMP_FORMAT_4BIT_LSN_PAL
1259                         for ( sal_Int32 nX = nXStart, nXIndex = 0; nX < maOrigSize.Width(); nX += nXAdd, nXIndex++ )
1260                         {
1261                             if( nXIndex & 1 )
1262                                 ImplSetPixel( nY, nX, *pTmp++ & 0x0f );
1263                             else
1264                                 ImplSetPixel( nY, nX, ( *pTmp >> 4 ) & 0x0f );
1265                         }
1266                     }
1267                     else // if ( mnPngDepth == 2 )
1268                     {
1269                         for ( sal_Int32 nX = nXStart, nXIndex = 0; nX < maOrigSize.Width(); nX += nXAdd, nXIndex++ )
1270                         {
1271                             switch( nXIndex & 3 )
1272                             {
1273                                 case 0 :
1274                                     ImplSetPixel( nY, nX, *pTmp >> 6 );
1275                                 break;
1276 
1277                                 case 1 :
1278                                     ImplSetPixel( nY, nX, ( *pTmp >> 4 ) & 0x03 );
1279                                 break;
1280 
1281                                 case 2 :
1282                                     ImplSetPixel( nY, nX, ( *pTmp >> 2 ) & 0x03 );
1283                                 break;
1284 
1285                                 case 3 :
1286                                     ImplSetPixel( nY, nX, *pTmp++ & 0x03 );
1287                                 break;
1288                             }
1289                         }
1290                     }
1291                 }
1292             }
1293             break;
1294 
1295             case 8 :
1296             {
1297                 if ( mbAlphaChannel )
1298                 {
1299                     if ( mnPngDepth == 8 )  // maybe the source is a 16 bit grayscale
1300                     {
1301                         for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 2 )
1302                             ImplSetAlphaPixel( nY, nX, pTmp[ 0 ], pTmp[ 1 ] );
1303                     }
1304                     else
1305                     {
1306                         for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 4 )
1307                             ImplSetAlphaPixel( nY, nX, pTmp[ 0 ], pTmp[ 2 ] );
1308                     }
1309                 }
1310                 else if ( mbTransparent )
1311                 {
1312                     if ( mnPngDepth == 8 )  // maybe the source is a 16 bit grayscale
1313                     {
1314                         for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp++ )
1315                             ImplSetAlphaPixel( nY, nX, *pTmp, mpTransTab[ *pTmp ] );
1316                     }
1317                     else
1318                     {
1319                         for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 2 )
1320                             ImplSetAlphaPixel( nY, nX, *pTmp, mpTransTab[ *pTmp ] );
1321                     }
1322                 }
1323                 else // neither alpha nor transparency
1324                 {
1325                     if ( mnPngDepth == 8 )  // maybe the source is a 16 bit grayscale
1326                     {
1327                         if( nXAdd == 1 && mnPreviewShift == 0 )  // copy raw line data if possible
1328                         {
1329                             int nLineBytes = maOrigSize.Width();
1330                             mpAcc->CopyScanline( nY, pTmp, BMP_FORMAT_8BIT_PAL, nLineBytes );
1331                             pTmp += nLineBytes;
1332                         }
1333                         else
1334                         {
1335                             for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd )
1336                                 ImplSetPixel( nY, nX, *pTmp++ );
1337                         }
1338                     }
1339                     else
1340                     {
1341                         for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 2 )
1342                             ImplSetPixel( nY, nX, *pTmp );
1343                     }
1344                 }
1345             }
1346             break;
1347 
1348             default :
1349                 mbStatus = sal_False;
1350             break;
1351         }
1352     }
1353     else // no palette => truecolor
1354     {
1355         if( mbAlphaChannel ) // has RGB + alpha
1356         {   // BMP_FORMAT_32BIT_TC_RGBA
1357             if ( mnPngDepth == 8 )  // maybe the source has 16 bit per sample
1358             {
1359                 if ( mpColorTable != mpDefaultColorTable )
1360                 {
1361                     for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 4 )
1362                        ImplSetAlphaPixel( nY, nX, BitmapColor( mpColorTable[ pTmp[ 0 ] ],
1363                                                                mpColorTable[ pTmp[ 1 ] ],
1364                                                                mpColorTable[ pTmp[ 2 ] ] ), pTmp[ 3 ] );
1365                 }
1366                 else
1367                 {
1368 //                  if ( nXAdd == 1 && mnPreviewShift == 0 ) // copy raw line data if possible
1369 //                  {
1370 //                      int nLineBytes = 4 * maOrigSize.Width();
1371 //                      mpAcc->CopyScanline( nY, pTmp, BMP_FORMAT_32BIT_TC_RGBA, nLineBytes );
1372 //                      pTmp += nLineBytes;
1373 //                  }
1374 //                  else
1375                     {
1376                         for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 4 )
1377                             ImplSetAlphaPixel( nY, nX, BitmapColor( pTmp[0], pTmp[1], pTmp[2] ), pTmp[3] );
1378                     }
1379                 }
1380             }
1381             else
1382             {   // BMP_FORMAT_64BIT_TC_RGBA
1383                 for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 8 )
1384                     ImplSetAlphaPixel( nY, nX, BitmapColor( mpColorTable[ pTmp[ 0 ] ],
1385                                                         mpColorTable[ pTmp[ 2 ] ],
1386                                                         mpColorTable[ pTmp[ 4 ] ] ), pTmp[6] );
1387             }
1388         }
1389         else if( mbTransparent ) // has RGB + transparency
1390         {   // BMP_FORMAT_24BIT_TC_RGB
1391             if ( mnPngDepth == 8 )  // maybe the source has 16 bit per sample
1392             {
1393                 for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 3 )
1394                 {
1395                     sal_uInt8 nRed = pTmp[ 0 ];
1396                     sal_uInt8 nGreen = pTmp[ 1 ];
1397                     sal_uInt8 nBlue = pTmp[ 2 ];
1398                     sal_Bool bTransparent = ( ( nRed == mnTransRed )
1399                                         && ( nGreen == mnTransGreen )
1400                                         && ( nBlue == mnTransBlue ) );
1401 
1402                     ImplSetTranspPixel( nY, nX, BitmapColor( mpColorTable[ nRed ],
1403                                                         mpColorTable[ nGreen ],
1404                                                         mpColorTable[ nBlue ] ), bTransparent );
1405                 }
1406             }
1407             else
1408             {   // BMP_FORMAT_48BIT_TC_RGB
1409                 for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 6 )
1410                 {
1411                     sal_uInt8 nRed = pTmp[ 0 ];
1412                     sal_uInt8 nGreen = pTmp[ 2 ];
1413                     sal_uInt8 nBlue = pTmp[ 4 ];
1414                     sal_Bool bTransparent = ( ( nRed == mnTransRed )
1415                                         && ( nGreen == mnTransGreen )
1416                                         && ( nBlue == mnTransBlue ) );
1417 
1418                     ImplSetTranspPixel( nY, nX, BitmapColor( mpColorTable[ nRed ],
1419                                                         mpColorTable[ nGreen ],
1420                                                         mpColorTable[ nBlue ] ), bTransparent );
1421                 }
1422             }
1423         }
1424         else  // has RGB but neither alpha nor transparency
1425         {   // BMP_FORMAT_24BIT_TC_RGB
1426             if ( mnPngDepth == 8 )   // maybe the source has 16 bit per sample
1427             {
1428                 if ( mpColorTable != mpDefaultColorTable )
1429                 {
1430                     for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 3 )
1431                         ImplSetPixel( nY, nX, BitmapColor( mpColorTable[ pTmp[ 0 ] ],
1432                                                             mpColorTable[ pTmp[ 1 ] ],
1433                                                             mpColorTable[ pTmp[ 2 ] ] ) );
1434                 }
1435                 else
1436                 {
1437                     if( nXAdd == 1 && mnPreviewShift == 0 ) // copy raw line data if possible
1438                     {
1439                         int nLineBytes = maOrigSize.Width() * 3;
1440                         mpAcc->CopyScanline( nY, pTmp, BMP_FORMAT_24BIT_TC_RGB, nLineBytes );
1441                         pTmp += nLineBytes;
1442                     }
1443                     else
1444                     {
1445                         for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 3 )
1446                             ImplSetPixel( nY, nX, BitmapColor( pTmp[0], pTmp[1], pTmp[2] ) );
1447                     }
1448                 }
1449             }
1450             else
1451             {   // BMP_FORMAT_48BIT_TC_RGB
1452                 for ( sal_Int32 nX = nXStart; nX < maOrigSize.Width(); nX += nXAdd, pTmp += 6 )
1453                     ImplSetPixel( nY, nX, BitmapColor( mpColorTable[ pTmp[ 0 ] ],
1454                                                         mpColorTable[ pTmp[ 2 ] ],
1455                                                         mpColorTable[ pTmp[ 4 ] ] ) );
1456             }
1457         }
1458     }
1459 }
1460 
1461 // ------------------------------------------------------------------------
1462 
1463 void PNGReaderImpl::ImplSetPixel( sal_uInt32 nY, sal_uInt32 nX, const BitmapColor& rBitmapColor )
1464 {
1465     // TODO: get preview mode checks out of inner loop
1466     if( nX & mnPreviewMask )
1467         return;
1468     nX >>= mnPreviewShift;
1469 
1470     mpAcc->SetPixel( nY, nX, rBitmapColor );
1471 }
1472 
1473 // ------------------------------------------------------------------------
1474 
1475 void PNGReaderImpl::ImplSetPixel( sal_uInt32 nY, sal_uInt32 nX, sal_uInt8 nPalIndex )
1476 {
1477     // TODO: get preview mode checks out of inner loop
1478     if( nX & mnPreviewMask )
1479         return;
1480     nX >>= mnPreviewShift;
1481 
1482     mpAcc->SetPixel( nY, nX, nPalIndex );
1483 }
1484 
1485 // ------------------------------------------------------------------------
1486 
1487 void PNGReaderImpl::ImplSetTranspPixel( sal_uInt32 nY, sal_uInt32 nX, const BitmapColor& rBitmapColor, sal_Bool bTrans )
1488 {
1489     // TODO: get preview mode checks out of inner loop
1490     if( nX & mnPreviewMask )
1491         return;
1492     nX >>= mnPreviewShift;
1493 
1494     mpAcc->SetPixel( nY, nX, rBitmapColor );
1495 
1496     if ( bTrans )
1497         mpMaskAcc->SetPixel( nY, nX, mcTranspColor );
1498     else
1499         mpMaskAcc->SetPixel( nY, nX, mcOpaqueColor );
1500 }
1501 
1502 // ------------------------------------------------------------------------
1503 
1504 void PNGReaderImpl::ImplSetAlphaPixel( sal_uInt32 nY, sal_uInt32 nX,
1505     sal_uInt8 nPalIndex, sal_uInt8 nAlpha )
1506 {
1507     // TODO: get preview mode checks out of inner loop
1508     if( nX & mnPreviewMask )
1509         return;
1510     nX >>= mnPreviewShift;
1511 
1512     mpAcc->SetPixel( nY, nX, nPalIndex );
1513     mpMaskAcc->SetPixel( nY, nX, ~nAlpha );
1514 }
1515 
1516 // ------------------------------------------------------------------------
1517 
1518 void PNGReaderImpl::ImplSetAlphaPixel( sal_uInt32 nY, sal_uInt32 nX,
1519     const BitmapColor& rBitmapColor, sal_uInt8 nAlpha )
1520 {
1521     // TODO: get preview mode checks out of inner loop
1522     if( nX & mnPreviewMask )
1523         return;
1524     nX >>= mnPreviewShift;
1525 
1526     mpAcc->SetPixel( nY, nX, rBitmapColor );
1527     mpMaskAcc->SetPixel( nY, nX, ~nAlpha );
1528 }
1529 
1530 // ------------------------------------------------------------------------
1531 
1532 sal_uInt32 PNGReaderImpl::ImplReadsal_uInt32()
1533 {
1534     sal_uInt32 nRet;
1535     nRet = *maDataIter++;
1536     nRet <<= 8;
1537     nRet |= *maDataIter++;
1538     nRet <<= 8;
1539     nRet |= *maDataIter++;
1540     nRet <<= 8;
1541     nRet |= *maDataIter++;
1542     return nRet;
1543 }
1544 
1545 // ------------------------------------------------------------------------
1546 
1547 // -------------
1548 // - PNGReader -
1549 // -------------
1550 
1551 PNGReader::PNGReader( SvStream& rIStm ) :
1552     mpImpl( new ::vcl::PNGReaderImpl( rIStm ) )
1553 {
1554 }
1555 
1556 // ------------------------------------------------------------------------
1557 
1558 PNGReader::~PNGReader()
1559 {
1560     delete mpImpl;
1561 }
1562 
1563 // ------------------------------------------------------------------------
1564 
1565 BitmapEx PNGReader::Read( const Size& i_rPreviewSizeHint )
1566 {
1567     return mpImpl->GetBitmapEx( i_rPreviewSizeHint );
1568 }
1569 
1570 // ------------------------------------------------------------------------
1571 
1572 const std::vector< vcl::PNGReader::ChunkData >& PNGReader::GetChunks() const
1573 {
1574     return mpImpl->GetAllChunks();
1575 }
1576 
1577 // ------------------------------------------------------------------------
1578 
1579 void PNGReader::SetIgnoreGammaChunk( sal_Bool b )
1580 {
1581     mpImpl->SetIgnoreGammaChunk( b );
1582 }
1583 
1584 
1585 } // namespace vcl
1586